View on GitHub

inf240.v20

INF240 Basic Tools for Coding Theory and Cryptography

Second lecture

[ Home ][ PDF ]

Topics: Cyclic Groups, Finite Groups, Caylay Tables, Subgroups

Cyclic Groups

A multiplicative group $G$ is called a cyclic group if $ \exists a \in G$ s.t $G = $ { $a^i : i \in \mathbb{Z}$ } Then $a$ is called a generator of $G$ And we denote this $G = \langle a \rangle $

All cyclic groups are commutative: $ ab = ba$

For a cyclic group the following holds: $a^i \cdot a^j = a^{i + j} = a^{j + i} = a^j \cdot a^i$

Equivelence relation

Let $S$ be a set and $R \subseteq S \times S$

Then $R$ is calles the equivelance relation if the followig holds:

i) Reflexivity:

ii) Symmetry:

$ \forall s,t \in S$ if there is a pair $(s,t) \in R$ then there must also be an pair $(t,s) \in R$

iii) Transivity

$\forall s,t,p \in S$ if there exist $(s,t) \in R$ and $(t,p) \in R$ then there exist an $(s,p) \in R$

Equiv Examples

Reflexivity: Property i) $a = a$

Symmetry: Property ii) $a = b \Rightarrow b = a$

Transivity: Property iii) $ a = b , b = c \Rightarrow a = c$

Partition of a Set

When we can represent $S$ as a union of subsets

$ S = \bigcup_{i\in T} S_{ij} $ where $ S_j \neq \emptyset$ and $S_i \subseteq S$ we have that $S_i \cap S_j = \emptyset$ when $i \neq j$

[ $s$ ] = { $t \in S : (s,t) \in R$ } is an equivelence class.

$ t \in $ [ $s$ ] $\Rightarrow $ [ $t$ ] = [ $s$ ]

Different equivelence classes gives a partition of $S$.

Congruent

On the set $\mathbb{Z}$ , $\forall a,b \in \mathbb{Z}$ ,$ n \in \mathbb{N}$

$a$ is congruent to $b$ modulo $n$ if $a-b$ is divisible/mutiple by/of $n$.

That is, $a = b + k\cdot n$ for some $k\in \mathbb{Z}$.

Congruent is an equvilence relation.

i) Reflexitivity: $a \equiv a \text{ mod } n$

ii) Symetry:

iii) Transivity

Classes

Considewr the equivalance classes into which the relation of congruence modulo $n$ partitions the set $\mathbb{Z}. These will be the sets:

[ $0$ ] = {$ …,-2n, -n, 0, n, 2n, … $}

[ $1$ ] = {$ …,-2n+1, -n+1, 1, n+1, 2n+1, … $}

[ $n-1$ ] = {$ …,-n-1, -1, n-1, 2n-1, 3n-1, … $}

[ $0$ ] gives $0$ for all integers [ $1$ ] gives $1$ for all integers [ $n-1$ ] gives $n-1$ for all integers

The generator $\langle a \rangle = \langle n \cdot a ; n \in \mathbb{Z}$

$\mathbb{Z_n}$ = $\langle \cdot$ [ $i$ ] : $n \in \mathbb{Z}\rangle$

$| \mathbb{Z_n}| = n $, where $n$ is ther order of $\mathbb{Z_n}$

Example of a group

$\langle$ [ $1$ ], [ $2$ ], … , [ $n-1$] , $ + \rangle$

Does this form a group?

We may define the sets of equvelance classes a binary operation $+$:

[ $a + b$] = [ $a$ ] + [ $b$ ]

Where $a$ and $b$ are any element in their respective sets [ $a$ ] and [ $b$ ].

[ $a’$ ] = [ $a$ ]

[ $b’$ ] = [ $b$ ]

Is this true: [ $a$ ] + [ $b$ ] = [ $a’$ ] + [ $b’$ ]

We wanna know if the are congruent:

Proof:

OK it is a congruent.

Assisiative property

i) Identity element: [ $0$ ] + [ $a$ ] = [ $0 + a$ ] = [ $a$ ]

ii) [ $a$ ] the inverse is [ $-a$ ]

Yeas, $\langle$ [ $1$ ], [ $2$ ], … , [ $n-1$] , $ + \rangle$ and it forms the group:

$\mathbb{Z_n}$ = $\langle$ { [ $0$ ], [ $1$ ], [ $2$ ], … , [ $n-1$ ], $+ \rangle$ } and is calles the group of integers modulo n.

Finite groups

In general $G$ is finite if it contains a finite number of elements.

Then this number is called the order of $G \to | G |$

Otherwise a group is galles infinite.

$G$-group has finite numbers $| G | = n$

Caylay tables

For the group $\langle G, * \rangle = $ { $a_1, a_2, … ,a_n$ }

Caylay table for multiplication
$\cdot$ $a_1$ $a_2$ $a_n$  
$a_1$  $a_1\cdot a_1$ $a_1\cdot a_2$  $a_1\cdot a_n$  
$a_2$  $a_2\cdot a_1$ $a_2\cdot a_2$  $a_2\cdot a_n$  
   
$a_n$ $a_n\cdot a_1$ $a_n\cdot a_2$  $a_n\cdot a_n$  
Caylay table for addition
$ + $ $a_1$ $a_2$ $a_n$  
$a_1$  $a_1 + a_1$ $a_1+ a_2$  $a_1+a_n$  
$a_2$  $a_2+ a_1$ $a_2+ a_2$  $a_2+ a_n$  
   
$a_n$ $a_n+ a_1$ $a_n+ a_2$  $a_n+ a_n$  
Example

The Caylay table for the group $\langle \mathbb{Z_6}, + \rangle$

$ + $ $0$ $1$ $2$ $3$ $4$ $5$
$0$ $0$ $1$ $2$ $3$ $4$ $5$
$1$ $1$ $2$ $3$ $4$ $5$ $0$
$2$ $2$ $3$ $4$ $5$ $0$ $1$
$3$ $3$ $4$ $5$ $0$ $1$ $2$
$4$ $4$ $5$ $0$ $1$ $2$ $3$
$5$ $5$ $0$ $1$ $2$ $3$ $4$

Subgroups

Let $G$ be a group and $H \subseteq G$, then $H$ is a subgroup of $G$.

$\langle H, * \rangle$ is a group, if it has the same operations.

$H \subseteq G$ then the following holds:

i) $\forall a,b \in H \Rightarrow a \cdot b \in H$ ii) $ e \in H$ iii) $\forall a \in H$, there is a $a^{-1} \in H$

{ $e$ } is a subgroup containg only $e$ and is called the trivial group

{ $G$ } is a subgroup of itself.

If $H$ is a subgroup of $G$, s.t $H \ne$ { $e$ }, $H \ne G$ then $H$ is called a non trivial group.

Subgroups are necessarily cyclic.

$\forall a \in G \langle a \rangle = $ { $ a^i : i \in \mathbb{Z}$} is called a subgroup generated by $a$

The properties above leads to:

If $| \langle a \rangle | = n $ is finite and , $ n \in \mathbb{N} \Rightarrow n $ is the order of element $a$

How to find the order

The smallest positive integer $d$ s.t $a^d = e$ is the order of $a$.

$\langle a \rangle = $ { $a^0, a^1, a^2, …, a^{d-1}$ } $\rightarrow$ All elements are different

$a^i = a^j$ where $0 \leq i < j \leq d-1$ we have that

$ a^{j-i} = a^0 = e$

$a^n = e \Rightarrow n$ is divisible by $d = | \langle a \rangle |$

Proof by contradiction.