Second lecture

[Home][PDF]

Topics: Cyclic Groups, Finite Groups, Caylay Tables, Subgroups

Cyclic Groups

A multiplicative group G is called a cyclic group if $\exists a \in G$ s.t $G = \{ a^i : i \in \mathbb{Z} \}$ Then a is called a generator of G And we denote this $G = \langle a \rangle$

All cyclic groups are commutative: ab = ba

For a cyclic group the following holds: $a^i \cdot a^j = a^{i+j} = a^{j+i} = a^j \cdot a^i$

Equivelence relation

Let S be a set and $R\subseteq S imes S$

Then R is calles the equivelance relation if the followig holds:

i) Reflexivity:

$$orall s\in S, (s,s)\in R$$

ii) Symmetry:

 $orall s, t \in S$ if there is a pair $(s,t) \in R$ then there must also be an pair $(t,s) \in R$

iii) Transivity

 $orall s,t,p\in S$ if there exist $(s,t)\in R$ and $(t,p)\in R$ then there exist an $(s,p)\in R$

Equiv Examples

Reflexivity: Property i) a = a

Symmetry: Property ii) $a=b \Rightarrow b=a$

Transivity: Property iii) $a = b, b = c \Rightarrow a = c$

Partition of a Set

When we can represent \boldsymbol{S} as a union of subsets

 $S=igcup_{i\in T}S_{ij}$ where $S_{j}
eq \emptyset$ and $S_{i}\subseteq S$ we have that $S_{i}\cap S_{j}=\emptyset$ when i
eq j

[s] = { $t \in S: (s,t) \in R$ } is an equivelence class.

 $t \in [\ s \] \Rightarrow [\ t \] = [\ s \]$

Different equivelence classes gives a partition of S.

Congruent

On the set $\mathbb Z$, $orall a, b \in \mathbb Z$, $n \in \mathbb N$

a is congruent to b modulo n if a - b is divisible/mutiple by/of n.

That is, $a = b + k \cdot n$ for some $k \in \mathbb{Z}$.

Congruent is an equvilence relation.

i) Reflexitivity: $a\equiv a mod n$

ii) Symetry:

$$egin{aligned} a,b,k,k'\in\mathbb{Z}\ a\equiv b \ \mathrm{mod}\ n &\Rightarrow a=b+k\cdot n\ &\Rightarrow b=a+k'\cdot n\ &\Rightarrow b=a \ \mathrm{mod}\ n \end{aligned}$$

iii) Transivity

$$egin{aligned} a,b,c,k,k'\in\mathbb{Z}\ a\equiv b \ \mathrm{mod}\ n,b\equiv c \ \mathrm{mod}\ n\ &\Rightarrow a=b+k\cdot n, b=c+k'\cdot n\ &\Rightarrow a=(c+k'\cdot n)+k\cdot n\ &\Rightarrow a=c+(k'+k)\cdot n\ &a=c \ \mathrm{mod}\ n\ \end{aligned}$$

Classes

Considewr the equivalance classes into which the relation of congruence modulo n partitions the set $\lambda = 0$ and $\lambda = 0$. These will be the sets:

$$\begin{array}{l} [\ 0 \] = \{ \ldots, -2n, -n, 0, n, 2n, \ldots \} \\ \\ [\ 1 \] = \{ \ldots, -2n + 1, -n + 1, 1, n + 1, 2n + 1, \ldots \} \\ \\ [\ n - 1 \] = \{ \ldots, -n - 1, -1, n - 1, 2n - 1, 3n - 1, \ldots \} \\ \\ [\ 0 \] \text{ gives } 0 \text{ for all integers } [\ 1 \] \text{ gives } 1 \text{ for all integers } [\ n - 1 \] \text{ gives } n - 1 \text{ for all integers } \end{array}$$

The generator $\langle a
angle = \langle n \cdot a; n \in \mathbb{Z}$

 \mathbb{Z} = $\langle \cdot \ [\ i \] : n \in \mathbb{Z}
angle$

 $|\mathbb{Z}|=n$, where n is ther order of \mathbb{Z}

Example of a group

$$\langle$$
 [1], [2], ... , [$n-1$] , $+
angle$

Does this form a group?

We may define the sets of equvelance classes a binary operation +:

$$[a+b] = [a] + [b]$$

Where *a* and *b* are any element in their respective sets [*a*] and [*b*].

$$[a'] = [a]$$

[*b*′] = [*b*]

Is this true: [a] + [b] = [a'] + [b']

We wanna know if the are congruent:

$$egin{aligned} a' &= a + k \cdot n, k \in \mathbb{Z} \ b' &= b + k' \cdot n, k' \in \mathbb{Z} \end{aligned}$$

Proof:

$$egin{aligned} & [a] + [a] = [a'] + [b'] \ & RHS = [a'+b'] \ & = [(a+k\cdot n) + (b+k'\cdot n)] \ & = [a+b+(k+k')\cdot n] \ & = [a+b] \ & [a] + [b] = [a] + [b] \end{aligned}$$

OK it is a congruent.

Assisiative property

$$egin{aligned} ([a]+[b])+[c]&=[a]+([b]+[c])\ ([a]+[b])+[c]&=[a+b]+[c]\ &=[(a+b)+c]\ &=[a+(b+c)]\ &=[a]+[b+c]\ &=[a]+([b]+[c])\ &\Box \, \mathrm{OK} \end{aligned}$$

i) Identity element: [0] + [a] = [0 + a] = [a]

ii) [a] the inverse is [-a]

$$[a] + [-a] = [-a] + [a] = 0$$

Yeas, \langle [1], [2], ... , [n-1] , $+\rangle$ and it forms the group:

 \mathbb{Z} = \langle { [0], [1], [2], ... , [n-1], +
angle } and is calles the group of integers modulo n.

Finite groups

In general G is finite if it contains a finite number of elements.

Then this number is called the order of $\,G o |\,G|\,$

Otherwise a group is galles infinite.

G-group has finite numbers |G| = n

Caylay tables

For the group $\langle \, G, st
angle =$ { $a_1, \, a_2, \, \ldots, \, a_n$ }

Caylay table for multiplication

•	a_1	a_2	•••	a_n
a_1	$a_1 \cdot a_1$	$a_1 \cdot a_2$		$a_1 \cdot a_n$
a_2	$a_2 \cdot a_1$	$a_2 \cdot a_2$		$a_2 \cdot a_n$
	•••	•••		•••
a_n	$a_n \cdot a_1$	$a_n \cdot a_2$		$a_n \cdot a_n$

Caylay table for addition

+	a_1	a_2	•••	a_n
a_1	$a_1 + a_1$	$a_1 + a_2$		$a_1 + a_n$
a_2	$a_2 + a_1$	$a_2 + a_2$		$a_2 + a_n$
	•••	•••		•••
a_n	$a_n + a_1$	$a_n + a_2$		$a_n + a_n$

Example

The Caylay table for the group $\langle \mathbb{Z},+\rangle$

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0

+	0	1	2	3	4	5
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

Subgroups

Let G be a group and $H \subseteq G$, then H is a subgroup of G.

 $\langle H,*
angle$ is a group, if it has the same operations.

 $H \subseteq G$ then the following holds:

i) $orall a, b \in H \Rightarrow a \cdot b \in H$ ii) $e \in H$ iii) $orall a \in H$, there is a $a^{-1} \in H$

 $\{ e \}$ is a subgroup containg only e and is called the trivial group

 $\{ G \}$ is a subgroup of itself.

If H is a subgroup of G, s.t $H \neq$ { e }, $H \neq$ G then H is called a non trivial group.

Subgroups are necessarily cyclic.

 $orall a \in \mathit{G}\langle a
angle =$ { $a^i: i \in \mathbb{Z}$ } is called a subgroup generated by a

$$egin{aligned} a^i \cdot a^j &= a^{i+j} \ a^0 &= e \ a^i &= a^{-i} \end{aligned}$$

The properties above leads to:

$$ightarrow a^i \cdot a^{-i} = a^{i+(-i)} = a^0 = e$$

If $|\langle a
angle| = n$ is finite and , $n \in \mathbb{N} \Rightarrow n$ is the order of element a

How to find the order

The smallest positive integer d s.t $a^d = e$ is the order of a.

 $\langle a
angle =$ { $a^0, \, a^1, \, a^2, \, \ldots, \, a^{d-1}$ } ightarrow All elements are different

$$a^i = a^j$$
 where $0 \leq i < j \leq d-1$ we have that

$$a^{j-i} = a^0 = e$$