Second lecture

[Home][PDF]

Topics: Cyclic Groups, Finite Groups, Caylay Tables, Subgroups

Cyclic Groups

A multiplicative group G is called a cyclic group if $\exists a \in G$ s.t $G=\left\{a^{i}: i \in \mathbb{Z}\right\}$ Then a is called a generator of G And we denote this $G=\langle a\rangle$

All cyclic groups are commutative: $a b=b a$
For a cyclic group the following holds: $a^{i} \cdot a^{j}=a^{i+j}=a^{j+i}=a^{j} \cdot a^{i}$
Equivelence relation
Let S be a set and $R \subseteq S \times S$
Then R is calles the equivelance relation if the followig holds:
i) Reflexivity:

$$
\forall s \in S,(s, s) \in R
$$

ii) Symmetry:
$\forall s, t \in S$ if there is a pair $(s, t) \in R$ then there must also be an pair $(t, s) \in R$
iii) Transivity
$\forall s, t, p \in S$ if there exist $(s, t) \in R$ and $(t, p) \in R$ then there exist an $(s, p) \in R$

Equiv Examples

Reflexivity: Property i) $a=a$
Symmetry: Property ii) $a=b \Rightarrow b=a$
Transivity: Property iii) $a=b, b=c \Rightarrow a=c$

Partition of a Set

When we can represent S as a union of subsets
$S=\bigcup_{i \in T} S_{i j}$ where $S_{j} \neq \emptyset$ and $S_{i} \subseteq S$ we have that $S_{i} \cap S_{j}=\emptyset$ when $i \neq j$
$[s]=\{t \in S:(s, t) \in R\}$ is an equivelence class.
$t \in[s] \Rightarrow[t]=[s]$
Different equivelence classes gives a partition of S.

Congruent

On the set $\mathbb{Z}, \forall a, b \in \mathbb{Z}, n \in \mathbb{N}$
a is congruent to b modulo n if $a-b$ is divisible/mutiple by/of n.
That is, $a=b+k \cdot n$ for some $k \in \mathbb{Z}$.
Congruent is an equvilence relation.
i) Reflexitivity: $a \equiv a \bmod n$
ii) Symetry:

$$
\begin{gathered}
a, b, k, k^{\prime} \in \mathbb{Z} \\
a \equiv b \bmod n \Rightarrow a=b+k \cdot n \\
\Rightarrow b=a+k^{\prime} \cdot n \\
\Rightarrow b=a \bmod n
\end{gathered}
$$

iii) Transivity

$$
\begin{gathered}
a, b, c, k, k^{\prime} \in \mathbb{Z} \\
a \equiv b \bmod n, b \equiv c \bmod n \\
\Rightarrow a=b+k \cdot n, b=c+k^{\prime} \cdot n \\
\Rightarrow a=\left(c+k^{\prime} \cdot n\right)+k \cdot n \\
\Rightarrow a=c+\left(k^{\prime}+k\right) \cdot n \\
a=c \bmod n
\end{gathered}
$$

Classes
Considewr the equivalance classes into which the relation of congruence modulo n partitions the set $\$ \backslash m a t h b b\{Z\}$. These will be the sets:
$[0]=\{\ldots,-2 n,-n, 0, n, 2 n, \ldots\}$
$[1]=\{\ldots,-2 n+1,-n+1,1, n+1,2 n+1, \ldots\}$
$[n-1]=\{\ldots,-n-1,-1, n-1,2 n-1,3 n-1, \ldots\}$
[0] gives 0 for all integers [1] gives 1 for all integers [$n-1$] gives $n-1$ for all integers
The generator $\langle a\rangle=\langle n \cdot a ; n \in \mathbb{Z}$
$\mathbb{Z}=\langle\cdot[i]: n \in \mathbb{Z}\rangle$
$|\mathbb{Z}|=n$, where n is ther order of \mathbb{Z}

Example of a group

$\langle[1],[2], \ldots,[n-1],+\rangle$
Does this form a group?
We may define the sets of equvelance classes a binary operation + :
$[a+b]=[a]+[b]$
Where a and b are any element in their respective sets $[a]$ and $[b]$.
$\left[a^{\prime}\right]=[a]$
$\left[b^{\prime}\right]=[b]$
Is this true: $[a]+[b]=\left[a^{\prime}\right]+\left[b^{\prime}\right]$
We wanna know if the are congruent:

$$
\begin{aligned}
& a^{\prime}=a+k \cdot n, k \in \mathbb{Z} \\
& b^{\prime}=b+k^{\prime} \cdot n, k^{\prime} \in \mathbb{Z}
\end{aligned}
$$

Proof:

$$
\begin{gathered}
{[a]+[a]=\left[a^{\prime}\right]+\left[b^{\prime}\right]} \\
R H S=\left[a^{\prime}+b^{\prime}\right] \\
=\left[(a+k \cdot n)+\left(b+k^{\prime} \cdot n\right)\right] \\
=\left[a+b+\left(k+k^{\prime}\right) \cdot n\right] \\
=[a+b] \\
{[a]+[b]=[a]+[b]}
\end{gathered}
$$

OK it is a congruent.

Assisiative property

$$
\begin{gathered}
([a]+[b])+[c]=[a]+([b]+[c]) \\
([a]+[b])+[c]=[a+b]+[c] \\
=[(a+b)+c] \\
=[a+(b+c)] \\
\quad=[a]+[b+c] \\
=[a]+([b]+[c])
\end{gathered}
$$

i) Identity element: $[0]+[a]=[0+a]=[a]$
ii) $[a$] the inverse is $[-a$]

$$
[a]+[-a]=[-a]+[a]=0
$$

Yeas, $\langle[1],[2], \ldots,[n-1],+\rangle$ and it forms the group:
$\mathbb{Z}=\langle\{[0],[1],[2], \ldots,[n-1],+\rangle\}$ and is calles the group of integers modulo n.

Finite groups

In general G is finite if it contains a finite number of elements.
Then this number is called the order of $G \rightarrow|G|$
Otherwise a group is galles infinite.
G-group has finite numbers $|G|=n$

Caylay tables

For the group $\langle G, *\rangle=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$

Caylay table for multiplication

\cdot	a_{1}	a_{2}	\cdots	a_{n}
a_{1}	$a_{1} \cdot a_{1}$	$a_{1} \cdot a_{2}$	\ldots	$a_{1} \cdot a_{n}$
a_{2}	$a_{2} \cdot a_{1}$	$a_{2} \cdot a_{2}$	\ldots	$a_{2} \cdot a_{n}$
\ldots	\cdots	\ldots		\cdots
a_{n}	$a_{n} \cdot a_{1}$	$a_{n} \cdot a_{2}$	\ldots	$a_{n} \cdot a_{n}$

Caylay table for addition

+	a_{1}	a_{2}	\cdots	a_{n}
a_{1}	$a_{1}+a_{1}$	$a_{1}+a_{2}$	\ldots	$a_{1}+a_{n}$
a_{2}	$a_{2}+a_{1}$	$a_{2}+a_{2}$	\cdots	$a_{2}+a_{n}$
\ldots	\cdots	\cdots		\cdots
a_{n}	$a_{n}+a_{1}$	$a_{n}+a_{2}$	\ldots	$a_{n}+a_{n}$

Example

The Caylay table for the group $\langle\mathbb{Z},+\rangle$

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0

+	0	1	2	3	4	5
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

Subgroups

Let G be a group and $H \subseteq G$, then H is a subgroup of G.
$\langle H, *\rangle$ is a group, if it has the same operations.
$H \subseteq G$ then the following holds:
i) $\forall a, b \in H \Rightarrow a \cdot b \in H$ ii) $e \in H$ iii) $\forall a \in H$, there is a $a^{-1} \in H$
$\{e\}$ is a subgroup containg only e and is called the trivial group
$\{G\}$ is a subgroup of itself.
If H is a subgroup of G, s.t $H \neq\{e\}, H \neq G$ then H is called a non trivial group.
Subgroups are necessarily cyclic.
$\forall a \in G\langle a\rangle=\left\{a^{i}: i \in \mathbb{Z}\right\}$ is called a subgroup generated by a

$$
\begin{gathered}
a^{i} \cdot a^{j}=a^{i+j} \\
a^{0}=e \\
a^{i}=a^{-i}
\end{gathered}
$$

The properties above leads to:

$$
\rightarrow a^{i} \cdot a^{-i}=a^{i+(-i)}=a^{0}=e
$$

If $|\langle a\rangle|=n$ is finite and , $n \in \mathbb{N} \Rightarrow n$ is the order of element a

How to find the order

The smallest positive integer d s.t $a^{d}=e$ is the order of a.
$\langle a\rangle=\left\{a^{0}, a^{1}, a^{2}, \ldots, a^{d-1}\right\} \rightarrow$ All elements are different
$a^{i}=a^{j}$ where $0 \leq i<j \leq d-1$ we have that
$a^{j-i}=a^{0}=e$

