INF 240 - Exercise problems - Structure of finite fields

Nikolay Kaleyski

Exercise 1. Construct the finite field \mathbb{F}_{16} as an extension of \mathbb{F}_{2} by adjoining a root α of the irreducible polynomial $f(x)=x^{4}+x+1$. Evaluate $g(x)=x^{3}+\alpha x+1$ at 1 , at $\alpha^{2}+\alpha$, and at $\alpha^{3}+\alpha+1$, i.e. compute:

1. $f(1)$;
2. $f\left(\alpha^{2}+\alpha\right)$;
3. $f\left(\alpha^{3}+\alpha+1\right)$.

Exercise 2. Consider the polynomials $f(x)=x^{2}+2$ and $g(x)=x^{2}+4 x+2$ over \mathbb{F}_{5}. One of them is primitive, while the other is not; determine which is which.

Exercise 3. Consider the polynomial $f(x)=x^{3}+6 x^{2}+4$ over \mathbb{F}_{7}.

1. Verify that f is irreducible over \mathbb{F}_{7};
2. find all k such that f remains irreducible over $\mathbb{F}_{7^{k}}$;
3. find all k such that f has roots in $\mathbb{F}_{7^{k}}$.

Exercise 4. Find all irreducible polynomials of degree 3 over \mathbb{F}_{3}.
Exercise 5. Consider the finite field $\mathbb{F}_{2^{6}}$ constructed by adjoining a root α of $f(x)=x^{6}+x^{4}+x^{3}+x+1$ to \mathbb{F}_{2}. Compute the absolute trace of the elements $\alpha+1, \alpha^{5}+\alpha^{2}+1$ and $\alpha^{3}+\alpha^{2}+\alpha$.

Exercise 6. Consider the finite field \mathbb{F}_{27} obtained by adjoining a root α of the irreducible polynomial $x^{3}+2 x+1$ to \mathbb{F}_{3}. Show that the equation

$$
x^{2}-x^{6}=2 \alpha^{2}+1
$$

has no solutions in \mathbb{F}_{27}.
Hint: apply the absolute trace to both sides of the equation.
Exercise 7. Consider the finite field \mathbb{F}_{q} with $q=5^{12}$. Find all subfields of \mathbb{F}_{q}.
Exercise 8. Suppose α is a primitive element of \mathbb{F}_{25}. Find all primitive elements of \mathbb{F}_{25}, i.e. determine all i such that α^{i} is a primitive element of \mathbb{F}_{25}.

