INF 240 - Exercise problems - Structure of finite fields

Nikolay Kaleyski

Exercise 1. Construct the finite field \mathbb{F}_{16} as an extension of \mathbb{F}_2 by adjoining a root α of the irreducible polynomial $f(x) = x^4 + x + 1$. Evaluate $g(x) = x^3 + \alpha x + 1$ at 1, at $\alpha^2 + \alpha$, and at $\alpha^3 + \alpha + 1$, i.e. compute:

- 1. f(1);
- 2. $f(\alpha^2 + \alpha);$
- 3. $f(\alpha^3 + \alpha + 1)$.

Exercise 2. Consider the polynomials $f(x) = x^2 + 2$ and $g(x) = x^2 + 4x + 2$ over \mathbb{F}_5 . One of them is primitive, while the other is not; determine which is which.

Exercise 3. Consider the polynomial $f(x) = x^3 + 6x^2 + 4$ over \mathbb{F}_7 .

- 1. Verify that f is irreducible over \mathbb{F}_7 ;
- 2. find all k such that f remains irreducible over \mathbb{F}_{7^k} ;
- 3. find all k such that f has roots in \mathbb{F}_{7^k} .

Exercise 4. Find all irreducible polynomials of degree 3 over \mathbb{F}_3 .

Exercise 5. Consider the finite field \mathbb{F}_{2^6} constructed by adjoining a root α of $f(x) = x^6 + x^4 + x^3 + x + 1$ to \mathbb{F}_2 . Compute the absolute trace of the elements $\alpha + 1$, $\alpha^5 + \alpha^2 + 1$ and $\alpha^3 + \alpha^2 + \alpha$.

Exercise 6. Consider the finite field \mathbb{F}_{27} obtained by adjoining a root α of the irreducible polynomial $x^3 + 2x + 1$ to \mathbb{F}_3 . Show that the equation

$$x^2 - x^6 = 2\alpha^2 + 1$$

has no solutions in \mathbb{F}_{27} .

Hint: apply the absolute trace to both sides of the equation.

Exercise 7. Consider the finite field \mathbb{F}_q with $q = 5^{12}$. Find all subfields of \mathbb{F}_q .

Exercise 8. Suppose α is a primitive element of \mathbb{F}_{25} . Find all primitive elements of \mathbb{F}_{25} , *i.e.* determine all *i* such that α^i is a primitive element of \mathbb{F}_{25} .