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1 Converting between different representations

Boolean functions and vectorial Boolean functions can be represented in a num-
ber of different ways, each of which has its advantages and disadvantages in
terms of e.g. memory storage and the efficiency of performing different opera-
tions on the function. We have seen three representations of a Boolean function:
via a truth table, via its algebraic normal form (ANF), and via a univariate poly-
nomial. A basic task involves converting between these representations.

1.1 Computing truth tables from the ANF

Computing the TT from the ANF is very simple and amounts to substituting
concrete values for x1, x2, . . . , xn into the ANF and simplifying the resulting
expression.

Exercise 1. Consider the (4, 1)-function given by the ANF

f(x1, x2, x3, x4) = 1 + x1 + x3 + x1x2x3 + x1x2x3x4.

Find the truth table of f .

Exercise 2. Consider the (4, 3)-function given by the ANF

F (x1, x2, x3, x4) = (0, 1, 1)+x1(1, 0, 1)+x2(1, 1, 1)+x1x2(1, 0, 0)+x1x3(0, 0, 1).

Find the truth table of F .

2 Computing the ANF from a truth table

The process of reconstructing the ANF from a truth table is slightly more in-
volved, and there are several ways to do it. We have seen how to do this via the
ANF’s of the so-called atomic functions, which is a conceptually simple method.
More sophisticated algorithms for solving this problem exist, but are outside the
scope of the lecture. In some cases, it may even be possible to guess the ANF
by intuitively reasoning about the TT.

Exercise 3. Find the ANF of the (3, 1)-function with the following TT:
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x1 x2 x3 f(x1, x2, x3)
0 0 0 1
1 0 0 0
0 1 0 0
1 1 0 1
0 0 1 1
1 0 1 0
0 1 1 0
1 1 1 0

Table 1: Truth table for Exercise 3

Exercise 4. Find the ANF of the (4, 1)-function with the following TT:

x1 x2 x3 x4 f(x1, x2, x3, x4)
0 0 0 0 0
1 0 0 0 1
0 1 0 0 0
1 1 0 0 0
0 0 1 0 0
1 0 1 0 1
0 1 1 0 0
1 1 1 0 1
0 0 0 1 1
1 0 0 1 0
0 1 0 1 1
1 1 0 1 1
0 0 1 1 1
1 0 1 1 0
0 1 1 1 1
1 1 1 1 0

Table 2: Truth table for Exercise 4

Exercise 5. Find the ANF of the (3, 3)-function with the following truth table:

x1 x2 x3 f(x1, x2, x3)
0 0 0 (0, 0, 0)
0 0 1 (0, 0, 0)
0 1 0 (0, 1, 0)
0 1 1 (1, 1, 1)
1 0 0 (1, 0, 1)
1 0 1 (1, 0, 1)
1 1 0 (0, 0, 0)
1 1 1 (0, 0, 0)

Table 3: Truth table for Exercise 5

Exercise 6. Find the ANF of the (3, 3)-function with the following truth table:
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x1 x2 x3 F (x1, x2, x3)
0 0 0 (0, 1, 1)
1 0 0 (1, 1, 1)
0 1 0 (1, 0, 1)
1 1 0 (1, 1, 0)
0 0 1 (0, 1, 1)
1 0 1 (1, 1, 1)
0 1 1 (1, 0, 1)
1 1 1 (1, 1, 1)

Table 4: Truth table for Exercise 5

2.1 Converting from and to univariate representation

Converting between the univariate representation of an (n,m)-function and its
TT and ANF representations is slightly more involved as it requires performing
computations (typically, both addition and multiplication) over a finite field.
This process has not been covered at the lectures, and will therefore not be
required for the exam. Despite this, we give a very brief description of how this
works for the sake of completeness.

Recall that every extension field F2n can be seen as an n-dimensional vector
space over its prime field F2. If α is a root of the irreducible polynomial used
to define the extension field, then every element of F2n can be expressed as
a linear combination of powers of α. For instance, if p(x) is an irreducible
polynomial of degree deg(p) = 3, then every element of F23 can be represented
as a0+a1α+a2α

2, for some a0, a1, a2 ∈ F2. Then any element can be represented
by the 3-dimensional vector (a0, a1, a2) over F2. In this way, any element of F2n

corresponds to an n-dimensional binary vector, and vice-versa.
To convert the univariate representation of a function, e.g. F (x) = x5+αx2,

to a truth table, we simply take every binary input vector, e.g. (0, 1, 1), find its
corresponding finite field element, e.g. α + α2, and evaluate the polynomial at
F (α+ α2). The resulting finite field element corresponds to the output vector.

To convert a truth table to univariate representation, one typically uses
Lagrange interpolation, which is a method for constructing a polynomial having
prescribed output values at given input points. An exposition of this method
is outside the scope of the lecture, and we conclude this discussion with the
note that Lagrange interpolation works in the same way over finite fields that it
does over, say, the integers; if one is familiar with interpolation from a different
context, applying it to the case of finite fields is straightforward.

If one needs to convert between ANF and univariate representation, the
simplest way to do it would be to use the truth table as an intermediate step.

3 Cryptographic properties of Boolean functions

There are many statistics quantifying the security of Boolean functions against
different kinds of cryptanalysis. Ones that we are familiar with are the dif-
ferential uniformity, nonlinearity, algebraic degree, and polynomial degree of a
function.

Exercise 7. Determine the algebraic degree of the following (6, 6)-functions:
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1. F1(x) = a48x55 + a21x42 + a23x40 + a14x39 + a45x36 + a6x23 + a47x17 +
a46x13 + a42x9 + a29x6;

2. F2(x) = a35x25 + a4x19 + a26x10;

3. F3(x) = a19x63 + a61x62 + a22x40 + a53x35 + a23x29 + a51x25 + a28x;

4. F4(x1, . . . , x6) = (0, 1, 1, 0, 0, 1)x1x2+ (1, 1, 1, 0, 1, 1)x1x4x5+ (0, 0, 0, 0, 0, 1)x1x4x5x6.

Exercise 8. Determine the nonlinearity of the Boolean function with ANF

f(x1, x2, x3) = 1 + x1x2 + x2x3 + x1x2x3.

Exercise 9. Determine the nonlinearity of the Boolean function with ANF

f(x1, x2, x3, x4) = 1 + x1x3 + x2x4 + x1x2x3x4.

Exercise 10. The following table corresponds to a power (4, 4)-function. De-
termine its differential uniformity.

x1 x2 x3 x4 F (x1, x2, x3, x4)
0 0 0 0 (0, 0, 0, 0)
1 0 0 0 (1, 0, 0, 0)
0 1 0 0 (0, 1, 1, 0)
0 0 1 0 (1, 1, 1, 0)
0 0 0 1 (1, 0, 0, 0)
1 1 0 0 (0, 1, 1, 0)
0 1 1 0 (1, 1, 1, 0)
0 0 1 1 (1, 0, 0, 0)
1 1 0 1 (0, 1, 1, 0)
1 0 1 0 (1, 1, 1, 0)
0 1 0 1 (1, 0, 0, 0)
1 1 1 0 (0, 1, 1, 0)
0 1 1 1 (1, 1, 1, 0)
1 1 1 1 (1, 0, 0, 0)
1 0 1 1 (0, 1, 1, 0)
1 0 0 1 (1, 1, 1, 0)

Table 5: Truth table for Exercise 10

4 Equivalence relations on Boolean functions

There are several notions of equivalence that play a prominent role in the study
and classification of cryptographic Boolean functions. Unfortunately, there is
no simple way to check whether two given functions are equivalent with re-
spect to most of these equivalence relations; in practice, the process of checking
equivalence is usually handled by some sort of computer search.

In the case of power, or monomial functions, i.e. functions with a univariate
representation of the form F (x) = xd for some positive integer d, it is enough
to consider cyclotomic equivalence, which is simple enough to even be verified
by hand for lower dimensions.
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Exercise 11. Consider the power functions

x10, x17, x20, x30, x43, x46.

Partition them into cyclotomic equivalence classes:

1. over F26 ;

2. over F28 .
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