University of Bergen
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INF 240 - Basic Tools for Coding theory and
Cryptography - Midterm Preparation
Solutions to the exercises

Problem 1. 1. A group is a pair (S,*) of a set S and a binary operation
%1 9xS — S (in other words, an operation which takes two elements of
S as inputs and outputs one element as S) which satisfies the following
azrioms:

(i) the operation is associative, i.e. a* (b c) = (a*b)*c for any
a,bce S;
(ii) there is an element e € S which satisfies axe = exa = a for any

a € S; this element is called the identity element or neutral
element;

(iii) for each element a € S there is an element a~! which satisfies

axa” ! =axa=e; this is called the inverse of a.

2. The Cayley tables for addition, resp. multiplication over Z7 are given
under Table 1, resp. Table 2 below.

(+]0]1[2[3[4]5[6]
0]0/1]2]3]4]5]6
1 [1]2(3(4]5]6]0
5 (2|3[4]5]6|0]1
503/4]5(6/0]1]2
1 (4(5(6]/0[1]2]3
515601234
6/6/0[1]2(3/4]5

Table 1: Cayley table for (Z7,+)
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Table 2: Cayley table for (Z7,-)

3. To verify that (Z7,+) is a group, we have to check that the three ax-
ioms from the definition (associativity, identity, inverse) hold. Since
addition modulo 7 is simply ordinary addition over Z followed by modu-
lation, and since we know that ordinary addition over Z is associative,
then so is addition modulo 7. In other words, since a + (b +c¢) =
(a+b)+c over Z, then also (a+(b+c)) mod 7= ((a+b)+¢c) mod 7
since the inputs to the modulation operation are the same. Clearly, 0
is the neutral element with respect to addition, sincea+0=0+a =a
for any a. Finally, to make sure that every element has an inverse, it
is enough to verify that each row and each column of Table 1 contains
the neutral element 0; this is indeed the case, and so (Zz,4) is a group.

4. The identity element with respect to multiplication is 1. If we look at
Table 2, we see that the column corresponding to 0 does not contain 1
anywhere; thus, no matter what we multiply 0 by, we will never get the
identity. In conclusion, 0 does not have an inverse, and hence (Zz,-)
s not a group.

5. Since 7 is a prime, and the size of any subgroup S of a group G is a
divisor of the size of G, a subgroup of (Z7,4+) can only contain 1 or 7
elements, i.e. (Z7,+) can only have the trivial subgroup {0} consisting
of the identity element, and the entire group Zy itself as subgroups. For
the purpose of providing more insight into the working of subgroups,
we find a normal subgroup of (Zg,+) instead; since 1, 2, 4, and 8 are
all divisors of 8, the group (Zs,+) can have non-trivial subgroups.

We know that every subgroup must contain the identity element (in
this case, 0), and must be closed under addition. Suppose our group
contains 0 and 1; since it is closed under addition, the elements 2 =
14+1,3=1+4+141, etc. must also belong to the subgroup. We thus get
that the subgroup must be Zr7 itself. Suppose now that we take 0 and 2
to be elements of the subgroup. Then also 4 =242 and 6 =2+ 2+ 2
must be in the subgroup as well. Now, if we take the set S = {0,2,4,6},
we can see that it is closed under addition since the sum of any two
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elements is already in S, e.g. 6+6=4€S5,24+4=6¢€ S. A subgroup
must also be closed under the inverse operation, and, in this case, it
is easy to verify that this is indeed so: —0 =0, —2 =6, —4 =4, and
—6=2are all in S.

In general, a subgroup S of G is called normal if gxhxg~' € S for
any h € S and any g € G, where g~' denotes the inverse of g. In
this case, however, we do not have to check this. We know that any
subgroup of an Abelian, or commutative, group (one where axb = bxa
for all possible a and b) is normal; since addition is a commutative
operation, our S = {0,2,4,6} is automatically a normal subgroup of
Zg.

6. The factor group (Zg,+)/S consists of classes, and two elements a,b €
Zg belong to the same class if and only if a — b € S, where —b is
the inverse of b under addition. We see that e.g. 0 and 1 belong to
different classes since 1 —0 ¢ S, while 2 and 0 are in the same class
since 2 —0 € S. In the end, we only get two classes: [0] = {0,2,4,6}
and [1) ={1,3,5,7}. Thus (Zs,+)/S ={[0],[1]}. To perform addition
of two classes [x] and [y] in the factor group, we simply compute the
sum x + y of the elements which represent them and find the class
which contains the sum. For example, [1] + [1] = [1 + 1] = [2] = [0]
since 0 and 2 belong to the same class.

7. The order of a group or subgroup is the number of its elements; here
the order of S is 4. The index of a subgroup S of a group G is the
number of elements in the factor group G/S; in this case, the index of
S in Zg is 2. Note that the product of the order and the index of any
subgroup S of a group G is always equal to the order of G: 4-2 = 8.

8. We now go back to Z7. A generator is an element g such that applying
the group operation to g enough times produces every element of the
group. We already observed that 1 generates (Z7,+) since taking 1,
1+41=2,14+141=3, ..., 1+14+1+1+14+1=6 gives us all
elements. In the case of (Z7\{0},-) we can see that taking 2, 2-2 = 4,
2-2-2 =1 only produces three elements, so 2 is not a generator. But
taking 3,2 =3-3, 6 =33, 4 =3% 5=13% 1= 3% yields all non-zero
elements in Z7, so 3 is a generator of (Z7 \ {0},-).

Problem 2. 1. A monic polynomial is one whose most significant co-
efficient (the one in front of the term of highest degree) is equal to 1.
Here f(x) is not monic but g(x) is.

2. The degree of f(x) is the value of the largest exponent with a non-zero
coefficient. Here deg(f) =5 and deg(g) = 3.

3. We have
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f@)=g@)=2"+2>+ (1+2)x+(2+2)=22"+2° + 3z + 4.

Note that all computations involving coefficients are performed modulo
7 since the polynomial is in Fr[x]. The exponents, however, are not
modulated.

4. We have

(225 4+242) (23 4+22+2) = 228 +225 +42° + 2t 4202 4 224223+ 4o 44 =
22% + 22° + 42° + o' + 22° + 227 + 62 + 4.

Once again, all computations are performed modulo 7.
5. We get 22° +x +2 = (23 + 22 + 2)(22% + 3) + 322 + 22 + 3.

Problem 3. 1. An irreducible polynomsial f(z) is one that cannot be
written as the product f(x) = g(x)h(z) of two other polynomials sat-
isfying both deg(g) < deg(f) and deg(h) < deg(f).

2. We write down all polynomials over Fo[x] of degree 3. These are all
polynomials of the form 3 + ax?® 4+ bx + ¢ for a,b,c € Fa:

x3, x3+1, x3+x, x3+x+1, 333—1—3:2, x3+x2+1, x3+x2+x, B’ +a+1.

Since these polynomials are of degree 3, if they are reducible, then one
of the factors g(x) and h(x) must be of degree 1, and we know that
any polynomial divisible by a polynomial of degree 1 has a root. It thus
suffices to filter out the polynomials from the list that have roots. We
only have two possible values, viz. 0 and 1, which may be roots, so
this is easy to check. In the end, we are left with only 2 + x + 1 and
x>+ 22+ 1.

3. Let p(x) = 23+ x + 1. The finite field E = Falx]/(p(x)) consists of
classes represented by all possible remainders of division by p(z) =
23+ 2 +1, i.e. all polynomials of degree at most 2, i.e. all polynomials
of the form ax® + bx + c for a,b,c € Fy:

E = {[0], [1], [z], [z + 1], [z%], [2* + 1], [#* + 2], [2* + = + 1]}
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4. To compute sums or products of [x] and [y], we simply compute x +y,
resp. -y and modulate by p(x) if necessary. We thus have

[z 4+ 1]+ [2° + 2] = [2* + 1],
[z 4+ 1] + [2* + = + 1] = [27],
(2% + 2] + [2” + 2 + 1] = [1],
[+ 1] - [2® + 2] = [1],
[z+1]- [2* + 2+ 1] = [2],
[2? + 2] - [2° + 2 + 1] = [27].
5. The additive inverse —[x] of [x] is simply the class [—z]; in this case,

addition and subtraction are the same, i.e. —1 = 1 mod 2, so every
element is its own additive inverse.

6. To be a multiplicative inverse to a = [z + 1|, the element d would have
to satisfy [z +1]-d=4d- [z + 1] = [1].



