University of Bergen Faculty of Mathematics and Natural Sciences

INF 240 - Basic Tools for Coding theory and Cryptography - Midterm Preparation

February 25, 2020 Student number: _____

Allowed assistance: Textbooks, lecture notes, calculators.

Problem 1. 1. Give the definition of a group.

- Construct Cayley tables for (Z₇, +) and (Z₇, ·), with addition and multiplication modulo 7.
- 3. Using the Cayley table for $(\mathbb{Z}_7, +)$, verify that it is a group.
- 4. Using the Cayley table for (\mathbb{Z}_7, \cdot) , verify that it is not a group.
- 5. Find a normal subgroup N of $(\mathbb{Z}_7, +)$.
- 6. Construct the factor group $(\mathbb{Z}_7, +)/N$. Explain how to perform addition in the factor group.
- 7. Find the index and the order of N in $(\mathbb{Z}_7, +)$.
- 8. Find generators of $(\mathbb{Z}_7, +)$ and (\mathbb{Z}_7, \cdot) .

Problem 2. Consider the polynomials $f(x) = 2x^5 + x + 2$ and $g(x) = x^3 + 2x + 2$ in $\mathbb{F}_7[x]$.

- 1. Give the definition of a monic polynomial. Are f(x) and g(x) monic?
- 2. Give the definition of the degree $\deg(f)$ of a polynomial f(x). What are the degrees of f(x) and g(x)?
- 3. Compute the sum f(x) + g(x).
- 4. Compute the product $f(x) \cdot g(x)$.
- 5. Divide f(x) by g(x) with remainder, i.e. find polynomials q(x) and r(x) in $\mathbb{F}_7[x]$ such that $f(x) = q(x) \cdot g(x) + r(x)$ and $\deg(r) < \deg(g)$.

1. Give the definition of an irreducible polynomial.

Problem 3. Consider the polynomial ring $\mathbb{F}_2[x]$.

- 2. Find all irreducible polynomials in $\mathbb{F}_2[x]$ of degree 3.
- 3. Take p(x) to be one of the irreducible polynomials from the previous step. Use it to construct the extension field $\mathbb{E} = \mathbb{F}_2[x]/(p(x))$.
- 4. Consider the elements a = [x + 1], b = [x² + x], and c = [x² + x + 1] of 𝔅. Compute the sums a + b, a + c, b + c and the products ab, ac, bc.
- 5. What are the additive inverses of a, b, and c?
- 6. What would an element $d \in \mathbb{E}$ have to satisfy in order for it to be a multiplicative inverse to e.g. a?