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Introduction

One of the major application of finite files is coding theory. This theory has its origin in a famous therorem of Shannon that guarantees the existence of code that can

transmit information at rates close to capacity with an arbirariuly small probability of error. On purpose of algebraic coding theory, the theory of error-correcting and error-

detecting codes, is to devie methonds for the contruction of such codes.

During the last two decades more and more abstract algebraic tools such as the theory of finite fields and polynomials over finite fileds have indluenced coding.

In particular the description on redundant codes by polynomials over  is a milestone in this development. Thefact tath one can use shift registers for coding and

decoding establishes a connection with linear recurring sequences.

Linear Codes

The problem of the communication of information , in particular the coding and decoding of information for the reliable transmission over a "noisy" channel, is of great

importance today.

Typically, one has to transmit a message which consists of a finite sequence of symbols that are elements of some finite alphabet. For instance, if this alphabet consists

simply of  and , the message can be described as a binary number.

Generally the alphabeth is assumned to be a finite field.

Now the transmission of finite sequences of elements of the alphabeth over a communication channel need not be perfect in the sense that each bit of information is

transmitted unaltered over this channel.

As there is no ideal channel without "noise" the receiver of the transmitted may obtain distorted information and may make errors in interpreting the transmitted signal.

One of the main problems of coding theory is to make the errors, which occur for instance because of noisy channels, extremly imrobable. The methods to improve the

reliability of transmission depend on properties of finite fields.

A basic idea in algebraic coding throry is to transmit redundant information together with the message one wants to communicate; that is one extends the sequence of

message symbols to a longer sequence in a systematic maner.

A simple model of communication system is shown in figure.
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We assume that the symbols of the message and of the coded message are elemens of the same finite field .

Coding means to encode a block of  message symbols  into a code word  of  symbols  where .

We regard the code word as an -dimentional row vector .

Thus  in the figure is a function from  into  called a coding scheme, and  is a decoding scheme.

A simple type of coding scheme arises when each block  of message symbols is encoded infto a code word of the form:

where the first  symbols are the original message symbols and the additional  symbols in  are control symbols. Such coding schemes are often presented in the

following way.

Let  be a given  matrix with entries in  that is of the special form:

where  is an  matric and  the identity matric of order . The control symbols  can be calculated from the system of equations:

for code words . The equations of this system are called parity-check-equations.

Example

Let  be the following  matrix over :

Then the control symbols can be calculated by solving:

given :

The control symbols  can be expressed as:

Thus the coding scheme in this case is a linear map from  into  given by:

In general, we use the following terminology in connections with coding schemes that are given by linear maps.

Definition 9.2

Let  be an  matrix of rank  with entries in .

The set  of all -dimentional vectors  such that  is called a linear  code over .  is called the length  is called the dimention of the code.

The elements of  are called code words (or code vectors), the matrix  is a parity-check matric of .

If ,  is called a binary code. If  is of the form  , then  is called a systematic code.

Systematic code (from wiki): "In coding theory, a systematic code is any error-correcting code in which the input data is embedded in the encoded output. Conversely, in a

non-systematic code the output does not contain the input symbols."

We note that the set  of solutions of the system  of linear equactions is a subspace of dimension  of the vector space .

Since the code words form an additive group,  is also called a group code. Moveover  can be regarded as the null space of the matrix .

Example 9.3 (Parity-check Code)

Let  and let the given message be  then the coding scheme  is defined by:

where  for  and:

Hence it follows that the sum og digits of any code word  is . If the sum of digits of the received word is . then the receiver knows that a transmission error

must have occurred.

Let , then this code is a binary linear  code with parity-check matrix .

Example 9.4 (Repetition code)

F𝕢

k a1a2 … ak, ai ∈ F𝕢 c1c2 … cn n cj ∈ F𝕢 n > k

n →c ∈ F𝕢

n

f F𝕢

k
F𝕢

n g : F𝕢

n → F𝕢

k

a1a2 … ak

a1a2 … akck+1 … ck

k n − k F𝕢

H (n − k) × n F𝕢

H = (A, In−k)

A (n − k) × k In−k n − k ck+1, … , ck

H→c
T = →0

→c

H 3 × 7 F𝟚

H = [ ]1 0 1 1 1 0 0 1 1 0 1 0 1 0 1 1 1 0 0 0 1 

H→c
T = →0

c1, c2, c3, c4

[ ]c1 +c3 +c4 +c5 = 0 c1 +c2 +c4 +c6 = 0 c1 +c2 +c3 +c7 = 0

c5, c6, c7

[ ]c5 = c1 +c3 +c4  c6 = c1 +c2 +c4 c7 = c1 +c2 +c3  

F
𝟜

𝟚
F

𝟟

𝟚

(a1, a2, a3, a4) → (a1, a2, a3, a4, a1 + a3 + a4, a1 + a2 + a4, a1 + a2 +a 3)

H (n − k) × n n − k F𝕢

C n →c ∈ F𝕢

n H→c
T = →0 (n, k) F𝕢 n k

C H C

q = 2 C H (A, In−k) C

C H→c
T = →0 k F𝕢

n

C C H

q = 2 a1, a2, … , ak f

f : a1 … ak → b1 … bk+1

bi = ai i = 1, … , k

bk+1 = {0,  if ∑k
i=1 ai = 0,  1,  if ∑k

i=1 ai = 1

b1 … bk+1 0 1

n = k + 1 (n,n − 1) H = (11 … 1)

https://en.wikipedia.org/wiki/Systematic_code
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In a repetition code each code word consists of any one message symbol  and  control symbols  all equal to . That is  is repeated  times.

This is a linear  code with parity-check matrix 

The parity-check equations  with  imply:

where  is the message and  is the codeword. The leads to the following definition:

Definition

The  matrix  is called canonical generator matrix of a linear  code with parity-check matrix .

From  and  it follows that  and  are related by:

The code  is equal to the row space of the canonical generator matrix . More genreally, any  matrix  whose row space is equal to  is called a generator matrix

of .

Example Generator Matrix

Let  be the following  matrix over :

The canonical generator matrix for the code defined by  is given by:

Definition (error word/vector)

If  is a code word and  is the received word after communication through a "noisy" channel, then  is called the error word or the error vector

Definition

Let  be two vectors in . Then:

The Hamming distatnce  between  and  is the number of coordinates in which  and  differ:

The Hamming weight  of  is the number of nonzero coordinates of .

Thus  gives the number of errors if  is the transmitted code word and  is the received word. If follows immediataly that  and 

.

Lemma Hamming distance

The Hamming distance is a metric on . That is for all  we have:

 if and only if 

In decoding received words , one usually tries to find the code word  such taht  is as small as possible, that is, one assumes that it is more likely that few

errors have occurred rather than many. Thus in the decoding we are looking for a code word  that is closets to  according to the Hamming distance.

This rule is called nearest neighbor decoding.

Definition (t-error-correction)

For  a code  is called a t-error_correcting if for any  there is at most one  such that 

If  is transmitted and at most  errors occur, then we have  for the recived word . If  is t-error-correcting then for all other code words  we

have  which means taht  is closest to  and nearest neighbor decoding gives the correct result. Therefor, one aim in coding throry is to construct codes

with code words "far apart". On the other hand, one tries to transmit as much information as possible. To reconcile these two aims is one of the problems of coding.

Def: Minimum distatnce of the linear code.

The number:

is called the minimum distatnce of the linear code .

Theorem

A code  with minimum distance  can correct up to  errors if 

a1 n − 1 c2 = ⋯ = cn a1 a1 n − 1

(n, 1) H = (−1, In−1)

H→e
T = →0 H = (A, In−k)

→c
T = [ ]→aTIk  − A

= [ ]T→a(Ik, −AT )

→a = a1, … , ak →c = c1, … , cn

k × n G = (Ik, −AT ) (n, k) H = (A, In−k)

H→e
T = →0 →c = →aG H G

GHT = →0

C G k × n G C

C

H 3 × 7 F𝟚

H = [ ]1 0 1 1 1 0 0 1 1 0 1 0 1 0 1 1 1 0 0 0 1 

H

G = [ ]1 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0

→c →y →e = →y − →c = e1 … en

→x, →y F𝕢

n

d(→x, →y) →x →y →x →y

w(→x) →x →x

d(→x, →y) →x →y w(→x) = d(→x, →0)
d(→x, →y) = w(→x − →y)

F𝕢

n
→x, →y, →z ∈ F𝕢

n

d(→x, →y) = 0 →x = →y

d(→x, →y) = d(→y, →x)
d(→x, →z) = d(→x, →y) + d(→y, →z)

→y →c w(→y − →c)
→c →y

t ∈ N C ⊆ F𝕢

n
→y ∈ F𝕢

n
→c ∈ C d(→y, →c) ≤ t

→c ∈ C t d(→y, →c) ≤ t →y C →z ≠ →c

d(→y, →z) > t →c →y

dC = min
→u,→v∈C,→u≠→v

d(→u, →v) = min
→0≠→c∈C

w(→c)

C

C dC t dC ≥ 2t + 1
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Proof:

A ball  of radius  and center  consists of all vectors  such that . The nearest neighbor decoding rule ensures that each received word

with  or fewer errors must be in a ball of radius  and center the transmitted code word. To correct  errors, the balls with code words  as centers must not overlap. If 

 and ,  then:

a contradiction to 

Example

Let  be the following  matrix over :

The code has minimum distatnce  and therefore can correct one error.

Lemma

This lemma is useful in determining the minimum distance of a code.

A linear code  with parity-check matrix  has minimum distatnce  if and only if any  columns of  are linearly independent.

Proof:

Assume there are  linearly dependent columns of , then  and  for suitable , hence . Similarly, if any  columns of  are

linearly independent, then there is no  of weight  hence .

Next we describe a simple decoding algorithm for linear codes. Let  be a linear  code over . The vector space  consists of all cosets 

 with 

Each coset contains  vectors and  can be regarded as being partitioned into cosets of :

where  and . A received vector  must be in one of the cosets, say in .

If the code word  was transmitted, then the error is given by  for a suitable . This leads to the following decoding scheme.

Decoding of Linear Codes.

All possible errors vectors  of a received vector  are the vectors in the coset of . The most likey error vector is the vector  with minimum weight in the coset of .

Thus we decode  as . The implementation of this procedure can be facilitated by the coset-leader algorithm for error correction of linear codes.

Binary Hamming Code

Definition: A binary  of length  with and  parity-check matrix  is called a binary Hamming Code if the columns of  are binary

representations of the integers .

Lemma

 is a 1-error-correcting code of deimention 

Proof

By definition of the parity check matrix  of , the rank of  is . Also any two columns of  are linearly independent. Since  contains with any two of its columns

also their sum, the minimum distaticen of  equals . Thus  is 1-error-correcting.

Example:

Let  be the  Hamming Code with parity-check matrix:

If the syndrome of a received word  is , then we know that the an error must have occurred in the fift position, since  is the binary representation of 

.

Cyclic codes

Cyclic vodes are special class of linear codes that can be implemented fairly simply and whose mathematical structure is reasonably well known.

Definition

A linear  code  over  is called cyclic if  implies 

From now on we impose the restriction  and let  be the ideal generated by . Then all elements of  can be

represented by polynomials of defree less than  and clearly this residue class ring is isomorphic to  as a vector space over . An isomophism is given by:

Bt(x) t x ∈ F𝕢

n
→y ∈ F

𝕟

𝕢
d(→x, →y) ≤ t

t t t →x

→u ∈ Bt(→x) →u ∈ Bt(→y) →x, →y ∈ C, →x ≠ →y

d(→x, →y) ≤ d(→x, →u) + d(→u, →y) ≤ 2t

dC ≥ 2t + 1

H 3 × 7 F𝟚

H = [ ]1 0 1 1 1 0 0 1 1 0 1 0 1 0 1 1 1 0 0 0 1 

dC = 3

C H dC ≤ s + 1 s H

s H H→c
T = →0 w(→c) ≤ s →c ∈ C, →c ≠ →0 dC ≤ s s H

→c ∈ C, →c ≠ →0 leqs dC ≥ s + 1

C (n, k) F𝕢 F𝕢

n/C
→a + C = →a + →c : →c ∈ C →a ∈ F𝕢

n

qk F𝕢

n C

F𝕢

n = (a(0) + C) ∪ (a(1) + C) ∪ ⋯ ∪ (a(s) + C)

→a
(0) = →0 s = qn−k − 1 →y →a

(i) + C

→c →e = →y − →c = →a
(i) + →z ∈ →a

(i) + C →z ∈ C

→e →y →y →e →y

→y →x = →y − →e

Cm n = 2m − 1,m ≥ 2 m × (2m − 1) H H

1, 2, … , 2m − 1

Cm 2m − m − 1

H Cm H m H H

Cm 3 Cm

C3 (7, 4)

H = [ ]0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 0 1 0 1 

→y S(→y) = (101)T 101 5

(n, k) C F𝕢 (a0, a1, … , an−1) ∈ C (an−1, a0, … , an−2) ∈ C

gcd(n, q) = 1 (xn − 1) xn − 1 ∈ F𝕢[x] F𝕢[x]/(xn − 1)
n F𝕢

n
F𝕢
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Because of this isomoerphism, we denote the elements of  either as polynomials of defree  or as vectors or words over .

We introduce multiplication of polynomials modulo  in the usual way; that is, if , then  means that 

.

A cyclic  code  can be obtained by multiplying each message of  coordinates (identified with a polynomial degree ) by a fixed polynomial  of degree 

 with  a diviso og . The polynomial  corresponds to code words of .

A generator matrix of  is given by:

Where .

The rows of  are obviously linear independent and rank , the dimention of .

If  then we see that the matrix:

is a parity-check matrix for .

The code with generator matrix  is the dual code of  whick is again cyclic.

(a0, a1, … , an−1) ⟺ a0 + a1x + ⋯ + an−1x
n−1

F𝕢[x]/(xn − 1) < n mod xn − 1 F𝕢

xn − 1 f ∈ F𝕢[x]/(xn − 1), g1, g2 ∈ F𝕢[x] g1g2 = f

g1g2 ≡ f mod (xn − 1)

(n, k) C k < k g(x)
n − k g(x) xn − 1 g(x),xg(x), … ,xk−1g(x) C

C

G = [ ]g0 g1 … gn−kl … 0 0 … 0 0 g0 g1 … … gn−k 0 … 0 ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 … 0 g0 g1 … gn−k 

g(x) = g0 + g1x + ⋯ + gn−kx
n−k

G (G) = k C

h(x) = (xn − 1)/g(x) = h0 + h1x + ⋯ + hkx
k

H = [0 0 … … 0 hk hk−1 … … h0 0 0 … 0 hk hk−1 … h0 0 ⋮ ⋮ ⋮ hk hk−1 ⋯ ⋯ h0 0 ⋯

C

H C


