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Lecture: 23 -24

[ Home ][ PDF ]

Topics: Boolean functions pt 2

These lectures are dedicated to vectorial Boolean functions used in cruptography in block ciphers. Two most

powerful attacks on block ciphers are differential and linear attacks and functions optimal agains both of them

are bent and almost bent (AB) functions, and functions optimal agianst differential attakc are almost perfect

nonlinear (APN) functions.

Every AB function is APN, the converse it not true in general: there are examples of APN functions which are

not AB, but all quadratic APN functinos are necessarily AB.

Checking APN and AB properties of functions is difficult in general but it is simpler for the cases of quadratic

and power functions.

There are severeal characterisations of APN and AB functions (necessary and sufficient conditions), in

particular, via Walsh transform.

There are different equivalence relations which have APN and AB properties as invariants. That is, if a function 

 is APN (or AB) and  is equivalent to it, then  is APN (respectivly AB) too. Linear, affine, cyclotomic, EA,

EAI and CCX equivalences are among them.

These equivalences relations relate to each other in some ways, for example, all these equivalences are

particular cases of CCZ-equivalence.

Differantial Uniformity and APN Functions

Differential Uniformity and Derivatives of Functions

Differential cryptoanalysis of block ciphers was introduced by Biham and Shamir in 1991.

 is a differential -uniform if:

$$ F(x + a) + F(x) = b, \forall a \in \mathbb{F_{2^{n}}^}m, \forall b \in \mathbb{F_{2^{n}}^}m $$

and it has at most  solutions.

Differential uniformity measures the resistance the resistatnace to differential attack. The smaller  the better

the resistance.

The derivative of  in direction  is

 denotes the number of solutions of 

Almost Perfect Nonlinear Functions

F F ′ F ′

F : F𝕟

𝟚
→ F

𝕟

𝟚
δ

δ

δ

F a ∈ F
∗

𝟚
𝕟

DaF(x) = F(x + a) + F(X)

δF (a, b) F(x + a) + F(x) = b
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F is almost perfect nonlinear (APN) if .

APN functions are optimal for differential cryptoanalysis

First example of APN functions [Nyberg 1993]:

Gold function  on  with 

Inverse function  on  with  odd.

Necessary and Sufficient Conditions for APN

for any 

 is a two-to-one mapping for any 

For every  the system:

admints  or  solutions.

The funtion  defined by:

has weight 

Quadratic and Power APN Functions

 on  then  is APN iff  is a two-to-one mapping. Indeed, for any 

If  is quadratic then  is APN if and only if:

has 2 solutions for any 

Example:

 is APN over  then  since  is quadratic power function and thus it is enough to

consider:

, that is 

Which gives  or, equivalently  when .

Hence  then  has only two colutions  and .

δ = 2

x2i+1
F

𝟚
𝕟 gcd(i,n) = 1

x2n−2
F

𝟚
𝕟 n

|F(x + a) + F(x) : x ∈ F𝟚𝕟 | = 2n−1

a ∈ F
∗

𝟚
𝕟

DaF a ≠ 0

(a, b) ≠ 0

{x + y = a F(x) + F(y) = b,

0 2

γF : F𝟚

𝟚𝕟
→ F𝟚

γF (a, b) = {1, if a ≠ 0 and δF (a, b) ≠ 0 0 otherwise

22n−1 − 2n−1

F(x) = xd F
𝟚𝕟 F D1F a ≠ 0

DaF(x) = (x + a)d + xd

= ad((
x

a
+ 1)d + (

x

a
)d

= adD1F(
x

a
)

F F

F(x + a) + F(x) = F(a) a ≠ 0

F(x) = x9
F

𝟚𝕟 gcd(3,n) = 1 F

F(x + 1) + F(x) = F(1) (x + 1)9 + x9 = 1

x8 = x x7 = 1 x ≠ 0

gcd(7, 2n − 1) = 1 F(x + 1) + F(x) = F(1) 0 1
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Nonlinearity and AB Functions

Nonlinearity of Functions

Linear cryptoanalysis was discovered by Matsui in 1993. Distatnce between two boolean functions:

Nonlinearity of :

Nonlinearity measures the resistance to linear attack [Chabaud and Vaudenay 1994].

Walsh Transform of an -function 

Walsh coefficients of  are the values of its Walsh Transform Walsh spectrum of  is the multi-set of all Walsh

coefficients of 

The extended Walsh spectrum of  is the multi-set of absolute values of all Walsh coefficients of 

Walsh Tansform and APN Functions

For any -function :

 is APN if and only if:

The nonlinearity of  via Walsh Transform

Covering radius bounds for an -function :

 if and only if  for any 

Then  is called bent.

Bent -functions exists if and only if  is even and 

Almost Bent Functions

d(f, g) = |x ∈ F
𝟚

𝕟 : f(x) ≠ g(x)|

F : F𝟚𝕟 → F𝟚𝕞

NF = min
a∈F

𝟚𝕟
,b∈F𝟚,v∈F∗

𝟚
𝕞

D(trm(vF(x), trn(ax) + b)

(n,m) F

λF (u, v) = ∑
x∈F

𝟚
𝕟

(−1)trm(vF(x))+trn(ux),u ∈ F
𝟚

𝕟 , v ∈ F
∗

𝟚𝕞

F F

F

F F

(n,n) F

∑
a,b∈F

𝟚𝕟

δF (a, b)2 =
1

22n
∑

a,b∈F
𝟚𝕟

λF (a, b)4

F

∑
u,v∈F

𝟚
𝕟
,v≠0

λ4
F (u, v) = 23n+1(2n − 1)

F

NF = 2n−1 −
1

2
maxu ∈ F

𝕟

𝟚
, v ∈ F

∗

𝟚
𝕞
|λF (u, v)|

(n,m) F

NF ≤ 2n−1 − 2n/2−1

NF ≤ 2n−1 − 2n/2−1 λF (u, v) = ±2n/2 u ∈ F
𝕟

𝟚
, v ∈ F

∗

𝟚𝕞

F

(n,m) n m ≤ n/2
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Sidelnikov-Chabaud-Vaudenay bound for :

It is tight only for  and -functions achive this bound have:  and are called

almost bent (AB).

AB functions are optimal for linear cryptanalysis  is AB if and only if 

AB functions exists only for  odd.

 is maximally nonlinear if  is even and  (conjectured optimal)

If  is AB then it is APN . If  is odd and  is quadratic  then  is . Algebraic degrees of AB functions

are upper bounded by 

First example of AB functions:

Golden ration  on  with  is odd.

Golden APN functoins with  even are not AB

Inverse fuciont are not AB.

Necessary and Sufficient Conditions for AB

For evyer  the system of equations-:

Has b = F(a) 2^n -2$ otherwise.

The function 

is bent

 is APN and all its Walsh coefficients are dicisible by 

Almost Bent Power Functions

In general, checking Walsh Spectrum for power functions is sufficient for  and 

 is AB on  if and only if  for $a \in \mathbb{F_2}, b \in \mathbb{F_{2^n}^}

\lambda_F(a,b) = \lambda_F(1, a^{-d}b) a\in \mathbb{F_{2^n}^}$

In the case of a power permutation it, it suffices to check (the Walsh spectrum) for  and all .

If  is a permutation,  is AB if and only if:

 for , since 

m ≥ n − 1

NF ≤ 2n−1 −
1

2
√3 ⋅ 2n − 2 − 2

(2n − 1)(2n−1 − 1)

2m − 1

m = n (n,n) NF = 2n−1 − 2
n−1

2

F λF (u, v) ∈ 0, ±2
n+1

2

n

F n = m NF = 2n−1 − 2
n
2

F n F APN F AB
n+1

2

x2i−1
F𝟚𝕟 gcd(i,n) = 1,n

n

a, b ∈ F𝟚𝕟

{x + y + z = a F(x) + F(y) + F(z) = b

3 ⋅ 22 − 2solutionsif and

γF : F𝟚

𝟚
𝕟

→ F𝟚

γF (a, b) = {1,  if a ≠  and δF (a, b) ≠ 0 0 otherwise 

F 2
n+1

2

a ∈ F𝟚 b ∈ F
∗

𝟚
𝕟

F(x) = xd F
𝟚

𝕟 λF (a, b) ∈ 0, ±2
n+1

2

since for

b = 1 a

F = xd F

λF (a, 1) ∈ 0, ±2
n+1

2 a ∈ F𝟚𝕟 λF (a, b) = λF (ab−
1
d , 1)
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Equivalence Relations of Functions

Important of Equivalence Relations for Functions

Equivalence relations preserving main cryptographic properties (APN and AB) divide the set of all functions into

classes.

They can be powerful construction methods providing for each function a huge class of functionss with the

same properties.

Instead of checking invariant properties for all functions, it is enough to check only one in each class.

Cyclotomic, Linear, Affine, EA- and EAI- Equivalences

 and  are affine (resp. linear) equivalent if

for some affine (resp. linear) permutation  and .

 and  are extended affine equivalent (EA-Equivalent):

for some affine permutations  and  and some affine 

 and  are EAI-equivalent if  is obtained from  by a sequence of applictions of EA-equivalence and

inverses of permutations.

Functions  and  over  are cyclotomic equivalent if

 if 

Relations Between Equivalences

Linear equivalences is particular case of affine equivalence Affine equivalence is a particular case of EQ-

Equivalence EQ-equivalence is a perticulare case of EAI-equivalence. Cyclotomic equivalence is a particular

case of EAI-equivalence

Invariants for Equivalences

APNNess, ABness, nonlinearity and differential uniformity are preserved by EAI-equivalence.

Algebraic degree is preserved by EA-equivalence but not by EAI-equivalence

Permutation property is preservedby cyclotomnic and affine equivalences (not by EA- or EAI- equivalences).

F F ′

F ′ = A1 ∘ F ∘ A2

A1 A2

F F ′

F ′ = A1 ∘ F ∘ A2 + A

A1 A2 A

F F ′ F ′ F

xd xd
′

F
𝟚

𝕟

d′ = 2i ⋅ d mod (2n − 1)

d′ = 2i/dmod(2n − 1) gcd(d, 2n − 1) = 1
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This list is up to cyclotomic equivalences and is conjectured complete (Dobbertin 1999)

For  even the inveres function is differentally 4-uniform and maximally nonlinear and is used as S-box in AES

with .

CCZ-Equivalence

The graph of a function  is the set:

 and  are CCZ-equivalent if  for some permutation  of .

CCZ-equivalence

n

n = 8

F : F
𝟚𝕟 → F

𝟚𝕟

GF = (x,F(x)) : x ∈ F
𝟚𝕟

F F ′ L(GF ) = GF ′ L F
𝟚

𝕟 × F
𝟚

𝕟



23_24_lecture.md 4/22/2020

7 / 7

Preserves differential uniformity, nonlinearity, extended Walsh spectrum

EAI-equivalence is a particular case of CCZ-equivalence

Is more general than EAI-equivalence.

CCZ-equivalence for special functions

Two quadradic functions are CCZ-equivalenc if and only if they are EA-equivalent

Two power functions are CCZ-equivalent if and only if they are cylotomic equivalent

Two Boolean functions are CCZ-equivalent if and only if they are EA-equivalent.

Two bent funtions are CCZ-equivalent if and only if they are EA-equivalent.


