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Lecture: 19 - 20

[ Home ][ PDF ]

Topics: Boolean functions

Boolean and Vectorial Boolean Functions

Let  and  be positive integers.  be the field with 2 elements  be a  dimentional vectorspace

of  That is  is the set that contains all the vectors of 0's and 1's of length .

Then we have boolean functions that are mappings

Meaning from  info , mapping vectors of 0's and 1's of length  info 0 or 1.

Vectorial boolean -functions are mappings

From  to 

Application of Boolean Functions

The inital motivation for introduction of Boolean functions:

fundamental mathematics

mathematical logic

Modern application of Boolean functions:

Reliability theory, multicriteria analysis, mathematical biology, image processing, theoretical physics,

statistics.

voting games, artificial intelligence, managment science, digital electronics, propositional logic,

combinatorics

coding theory, sequcen design, cryptography

On the number of Boolean functions

Let  be the set of all boolean functions:

for a given . The number of possible Boolean functions for this  is

which for  is compraable with the number of atoms in the universe.
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n 4 5 6 7 8

On the number of vectorial Boolean Functions

 is the set of vectorial Boolean Functions:

The number of all these functions increasees even faster.

n 4 5 6 7 8

Hence computer serach alone is not feasible for finding optimal Boolean functions for different applications.

Cryptographic properties of functions

S-Boxes are vectorial Boolean functions used in block ciphers to provide confusion. They should possess

certain properties to ensure resitance of the ciphers to cryptographic attacks.

Main cryptographic attacks on block ciphers and corresponding properties of S-Boxes:

Linear attack  Nonlinearity

Differential attack  Differential uniformity

Algebraic attack  Existence of low degree multivariate equations

Higher order differential attack  Algebraic degree

Interpolation attack  Univariate polynomial degree

Optimal Cryptographic Functions

Optimal Cryptographic functions are vectorial Boolean functions optimaly for primary cryptograhic criteria:

UNIVERSAL

They define optimal objects in several branches of mathematics and information theory (coding

theory, sequence design, projective geometry, combinatorics, commutative algebra)

HARD-TO-GET

There are only a few known constructions

HARD-TO-PREDICT

most conjectures are proven to be false

Binary expansion and representation of integers

Binary expansion of an integer k, 

BFn 216 232 264 2128 2256

≈ 6 ⋅ 104 4 ⋅ 109 1019 1038 1077

BF n
n

F : F𝟚

n → F𝟚

n

|BF n
n | = 2n2n

BF n
n 264 2160 2384 2896 22048

→

→

→

→

→

0 ≤ k ≤ 2n
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Where 

2-Weight of k:

is the binary representation of 

Truth table representation of function

For  the sequence  is called the truth table of .

Example:

Truth table of 

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

k 0 1 2 3 4 5 6 7

0 1 0 0 0 1 0 1

ANF representation of functions

ANF (Algebraic normal form) of  is a representation as a polynomial in  variables with

coefficient in 

The algebraic degree  of  is the degree of its ANF. F is affine if  *  is quadratic if 

k =
n−1

∑
s=0

2sks

ks, 0 ≤ ks ≤ 1

w2(k) =
n−1

∑
s=0

ks

vk = (kn−1, … , k0)

k

F : F𝟚

n → F𝟚

m (F(v0), … ,F(v2n−1)) F

F : F𝟚

3 → F𝟚 : (0, 1, 0, 0, 0, 1, 0, 1)

x1 x2 x3 F(x1,x2,x3)

Fvk

F : F𝟚

n → F𝟚

m n

F𝟚

m

F(x1, … ,xn) = ∑
u∈F

𝕟

𝟚

au

n

∏
i=1

x
ui
i , au ∈ F𝟚

m,u = (u1, … ,un)

do(F) F do(F) ≤ 1 F

do(F) ≤ 2
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affine : of, relating to, or being a transformation (such as a translation, a rotation, or a uniform stretching)

that carries straight lines into straight lines and parallel lines into parallel lines but may alter distance

between points and angles between lines

Example:

Boolean functions as Sums of Atomic functions I

If for  where  and  then for all  then  is atomic function.

Decomposition of  as a sum of atomnic functions.

Example 1:

 on 

k

0 0 0 0 0

1 0 0 1 1

2 0 1 0 0

3 0 1 1 0

4 1 0 0 0

5 1 0 1 1

6 1 1 0 0

7 1 1 1 1

If  is an atomic function then:  and 

Example:

geo

F(x1,x2,x3) = x1x2x2 + x2x3 + x3

do(F) = 3

fk : F𝟚

n → F𝟚 f(vk) = 1 f(vj) = 0 j ≠ k fk

f : F𝟚

n → F𝟚

f =
2n−1

∑
k=0

ϵkfk, ϵk ∈ F𝟚

F = (0, 1, 0, 0, 0, 1, 0, 1) = f1 + f5 + f7 F𝟚

3

x1 x2 x3 f(x)

f : F𝟚

n → F𝟚 f(x) = (x1 + ϵ1) … (xn + ϵn), ϵi ∈ F𝟚 do(f) = n

f1(x) = (1 + x1)(1 + x2)x3

f5(x) = x1(1 + x2)x3

f7(x) = x1x2x3

f(x) = f1(x) + f5(x) + f7(x)

f(x) = x1x2x3 + x2x3 + x3
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Remark:  for  if and only if the number of nonzero  in its decomposition of 

 is odd.

Univariate representation of functions

univariate: characterized by or depending on only one random variable

Let  denote the finite field with  elements. The univariate representation of  for 

The univariate degree of  is the degree of its univariate representation

Example:

where  is a primitive element of   has univariate degree 7 and algebraic degree 3.

Algrebraic degree of univariate function

Algebraic degree in univariate representation of .

Special functions

 is linear if

 is affine if it is a linear funtion pluss a constatnt

 is quadratic if for some affine 

 is power function or monomila if 

 is a permutation if it is a one-to-one map.

The inverse  of a permutation  is s.t 

Trace and Component functions

do(f) = n f : F𝟚

n → F𝟚 ϵk

f = ∑2n−1
k=0 ϵkfk, ϵk ∈ F𝟚

F𝟚𝕟 2n F : F𝟚𝕟 → F𝟚𝕞 m|n

F(x) =
2n−1

∑
i=0

cix
i, ci ∈ F

𝟚
𝕟

F

F(x) = x7 + αx6 + α2x5 + α4x3

α F
𝟚

𝟛 F

F

F(x) =
2n−1

∑
i=0

cix
i, ci ∈ F

𝟚
𝕟

do(F) = max
0≤i<2n,cj≠0

w2(i)

F

F(x) =
n−1

∑
i=0

bix
2i

F

F A

F(x) =
n−1

∑
i,j=0,i≠j

bijx
2i+2j + A(x)

F F(x) = xd

F

F−1 F F−1(F(x)) = F(F−1(x)) = x
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Trace function from  to  for  divisible by 

Absolute trace funtion:

For  and 

is a component function of 

Hamming Weight and Hamming Distance

The hamming weight of :

For  its support:

The Hamming weight of f: 

The Hamming distance between : 

Proposition:

�. 

�. 

�. 

Nonlinearity of Boolean Functions

From Wiki : In mathematics, more specifically in harmonic analysis, Walsh functions form a complete orthogonal

set of functions that can be used to represent any discrete function—just like trigonometric functions can be

used to represent any continuous function in Fourier analysis. They can thus be viewed as a discrete, digital

counterpart of the continuous, analog system of trigonometric functions on the unit interval. But unlike the sine

and cosine functions, which are continuous, Walsh functions are piecewise constant. They take the values −1

and +1 only, on sub-intervals defined by dyadic fractions. The system of Walsh functions is known as the Walsh

system. It is an extension of the Rademacher system of orthogonal functions. Walsh functions, the Walsh

system, the Walsh series, and the fast Walsh–Hadamard transform are all named after the American

mathematician Joseph L. Walsh. They find various applications in physics and engineering when analyzing

digital signals.

F
𝟚

𝕟 F
𝟚

𝕞 n m

trmn (x) =

n/m−1

∑
i=0

x2im

trn(x) = tr1
n(x) =

n−1

∑
i=0

x2i

F : F
𝟚𝕟 → F

𝟚𝕞 v ∈ F
∗
𝟚

𝕞

trm(vF(x))

F

x = (x1, … ,x2) ∈ F
𝕟

𝟚

wt(x) = |i ∈ 1, … ,n|xi ≠ 0

f : F𝕟

𝟚
→ F𝟚

sup
f

= x ∈ F
𝕟

𝟚
|f(x) = 1

wt(f) = | supf |

f, g F
𝕟

𝟚
→ F𝟚 : d(f, g) = wt(f + g)

d(f, g) = |x ∈ F
𝕟

𝟚
: f(x) ≠ g(x)|

d(f, g + 1) = 2n − d(f, g)

d(f, g) + d(g,h) ≥ d(f,h)

https://en.wikipedia.org/wiki/Walsh_function
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The nonlinerarity of 

Where

Walsh transform of  is the function:

Walsh coefficients of  are the values of  Walsh spectrum of  is the multi-set of its Walsh Coefficients

Extended Walsh spectrum of  is the mutli-set of absolute values of its Walsh coefficients.

Properties of Walsh Transform

 for 

Parseval's equation

 for  and  otherwise if 

 if 

 if 

 if 

f : F𝕟

𝟚
→ F𝟚

Nf = min
a∈F

𝕟

𝟚
,b∈F𝟚

d(f, a ⋅ x + b)

a ⋅ x

= (a1, … , an) ⋅ (x1, … ,xn)

= a1x1 + a2x2 + ⋯ + anxn

f

λf(u) = ∑
x∈F

𝕟

𝟚

(−1)f(x)+u⋅x,u ∈ F
𝕟

𝟚

f λf f

f

λf(u) = λg(0) g(x) = f(x) + u ⋅ x

λf(u) = 2n − 2wt(f(x) + u ⋅ x) = 2n − 2d(f(x),u ⋅ x)

wt(f) = 2n−1 − 1
2
λf(0)

Nf = 2n−1 − 1
2

max
u∈F

𝕟

𝟚

|λf(u)|

∑
u∈F

𝕟

𝟚

λf(u)λf(u + v) = {22n, if v = 0 0,  otherwise

∑
u∈F

𝕟

𝟚

(λf(u))2 = 22n

λ(u) = 0 u ≠ a (−1)b2n f(x) = a ⋅ x + b

λ(f+1)(u) = −λf(u)

λg(u) = λf(u + a) g(x) = f(x) + a ⋅ x

λg(u) = (−1)a⋅uλf(u) g(x) = f(x + a)

λh(u, v) = λf(u)λg(v) h(x, y) = f(x) + g(y), f : F𝕟

𝟚
→ F𝟚, g : F𝕞

𝟚
→ F𝟚
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Proof: (From slides) 

Inversion formula for Walsh Transform

Any function  is uniquely determined by its Walsh transform. That is, for any  we

have:

Bent functions

Bent functions exists if and only if  is even

Covering radious bound fro the nonlinearity of a bolean function:

 if and only if  for any 

If  is bent den  for  and  for 

Example of Bent funtions

 on 

 on  

Balanced funtions and derivatives

 is balanced if 

 is balanced if and only if 

If  is bent, then  is not balanced. (PS: Bent only happens for even numbers of )

The derivative of  in direction  is

 is called perfect nonlinear if  is balanced for all /{ }

 is bent if and only if it is perfect nonlinear.

f : F𝕟

𝟚
→ F𝟚 f : F𝕟

𝟚
→ F𝟚

(−1)f(u) = 2−n∑
x∈F

𝕟

𝟚

λf(x)(−1)u⋅x

n

Nf ≤ 2n−1 − 2n/2−1

Nf ≤ 2n−1 − 2n/2−1 λ(u) = ±2n/2 u ∈ F
𝕟

𝟚

f : F𝕟

𝟚
→ F𝟚 do(f) = 2 n = 2 do(f) ≤ n

2
n ≥ 4

f(x) = x1x2 F
𝟚

𝟚
,λf(u) = ±2

f(x) = 1 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 F
𝟜

𝟚
, λf(u) = 4

f : F𝕟

𝟚
→ F𝟚 wt(f) = 2n−1

f λf(0) = 0

f f n

f a ∈ F
𝕟

𝟚

Daf(x) = f(x) + f(x + a)

f : F𝕟

𝟚
→ F𝟚 Daf a ∈ F

𝕟

𝟚
0

f
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Bent functions and Extended affine-Equivalence

Boolean function  on  are called extended affine equivalent if  for 

 and  is an affine permutation.

If no such transformation exists then  are called EA-inequivalent

EA-Equivalent funtions have the same nonlinearity extende Walsh spectrum, algebraic degree

If  is EA-equivealent to a bent function , then  is bent also.

Construction of Bent functions

Primary contructions include

Maiorana-McFarland constructions Dillon's construction infinite classes in trace representation

Secondary constructions use known bent fuctinos asa building blocks.

Maiorana-McFarland constructions

Maiorana-McFarland constructions (MM-Class):

Where  is a permutation of  and  is a Boolean function over .

Then  is bent.

Number of functions in MM-class is 

There exist bent functions of any algebraic degree, 

Every quadratic bent funtion is EQ-equivalent to MM function

Every bent function with  is EQ-equivalent to MM function.

Dillon's function

 is called  or Dillon's function if:  where  is balanced and 

 

Trace Constructions

Gold function:  is bent on  where  is even and  is not -th

power.

Kasami function:  is bent on  where  is even and  is

not a cube.

f, g F
𝕟

𝟚
g(x) = f(A(x) + a) + b ⋅ x + c

a, b ∈ F
𝕟

𝟚
, c ∈ F𝟚 A : F𝕟

𝟚
→ F

𝕟

𝟚

f, g

g f g

f : F𝕟/𝟚

𝟚
× F

𝕟/𝟚

𝟚
→ F𝟚

f(x, y) = x ⋅ π(y) + g(y)

π F
𝕟/𝟚

𝟚
g F

𝕟/𝟚

𝟚

f

2n/2!22n/2

d, 2 ≤ d ≤ n
2

n ≤ 6

f : F
𝕟/𝟚

𝟚
→ F𝟚 PSap f(x, y) = g( x

y
) g : F

𝕟/𝟚

𝟚
→ F𝟚

g(0) = 0 do(f) = n

f(x) = trn(ax2i+1) F
𝟚𝕟

n
gcd(n,i)

a ∈ F
𝟚𝕟 2i + 1

f(x) = trn(ax22i−2i+1) F
𝟚𝕟 gcd(n, i) = 1 a ∈ F

𝟚𝕟
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Dillons function:  is bent on  where  under some condition

on .

Example of a secondary construction of bent functions

Theorem:

Let  s.t  and  are even. Then  is

bent if and only if  and  are bent.

Proof: Since 

Example:  is Bent (Se bent example).

Then 

is bent.

f(x) = trn(axj(2n/2−1)) F𝟚𝕟 gcd(j, 2n/2 + 1)

a

f : F𝕟

𝟚
→ F𝟚, g : F𝕞

𝟚
→ F𝟚,h : F𝕟+𝕞

𝟚
→ F𝟚 h(x, y) = f(x) + g(y) n,m h

f g

λh(u, v) = λf(y)λg(v)

f : F𝟚

𝟚
→ F𝟚, f(x1,x2) = x1,x2

h : F𝟚𝕟

𝟚
→ F𝟚

h(x1, … ,xn) = x1x2 + x3x4 + ⋯ + x2n−1x2n


