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Lecture: 19 - 20

[ Home ][ PDF ]

Topics: Periodic sequences, Characteristic Polynomials

Periodic Sequences

Chapter 8 ,1 p.398 -399

Definition ultimately periodic

Let  be an arbitrary nonempty set, and let  be a asequqnce of elements of . If there exisst integers 

 and  s.t  for all , then the sequence is called ultimately periodic and  is

vcalled a periode of the sequence. The samellest number amont all the possibel periods of an ultimately

periodic sequcen is called the least perido of the sequence.

Lemma 8.4: Every period of an ultimately periodic sequence is divisible by the least period

Proof

Let  be an arbitraty period of the ultimatetly periodic sequence  and let  be its least periode, so

taht we have  for all  and  for all  with suitable nonnegative integers 

and . If  were not divisivble by , we could use the division algorighm for integers to write 

with intergers  and . Then for all  we get:

and so  is a periode of the sequence, which contractids the difintion of the least period .

Theorem 8.7

Let  be any finite filed and  any positive integer. Then every -th-order linear recurring sequence in  is

ultimately periodic with least period  satisfying  and  if the sequence is homogeneous.

Proof:

We note that there are exactly  distinct -tuples of elements of . Therefore, by considering the state

vectors  for some  and  with . Using linear recurrence relation and induction, we

arrive at  for all  which showes that the linear roecurring sequence itself is ultimately

periodic with least period 

In case the linera recurring sequene is homogeneous and no state vector is the zero vector ( ), then all

subsequenct state vecctors are zero vecrtors, and so the sequence has least period  

Example 1 (8.8)

S s0, s1, … S

r > 0 n0 ≥ 0 sn+r = sn n ≥ n0 r

r s0, s1, … r1

sn+r = sn n ≥ 0 sn+r1
= sn n ≥ n1 n0

n1 r r1 r = m ⋅ r1 + t

m ≥ 1 0 < t < r1 n ≥ max(n0, n1)

sn = sn+r = sn+mr1+t = sn+(m−1)r1+t = ⋯ = sn+t

t □

F k k F

r r ≤ qk r ≤ qk − 1

qk k F

→s j = →s i i j 0 ≤ i ≤ j ≤ qk

→s n+j−i = →s n n geqi

r ≤ j − i ≤ qk

→0

r = 1 ≤ qk − 1 □

https://spydx.github.io/inf240.v20
https://spydx.github.io/inf240.v20/lectures/19_20_lecture.pdf


19_20_lecture.md 4/1/2020

2 / 4

The first-order linear recurring sequence  in  prime, with  for  and

arbitratry  shows that the upper bound for  in Theorem 8.7 may be attaind.

If  is any finnite filed and  is a primitive element of , then the first-order homogeneous linear recurring

sequence  in  with  for  and  has period . Therefore

the upper bound for  in the homogeneous case may also be attained.

We have  and then  implies  We get  and since  is primiteve

in  and  is the least period, then it gives .

Example 1 (8.9)

For a first-order homogeneoud linerar recurring sequcen in , it is easily seen taht the least period is the order

og  and hence divices . Indeed, we have , and with the same argument as

above we see that  and then  implies  giving us  which

happens only if  is a multipøle of the order of  which we know is a divisor og . Since  is the smallest

number with this property then it is the order og .

If , then the least periode of a -th-order homogeneous linear recurring sequence does not necessarily

divide . Consider for instance, the sequence  in  with  and 

 for . It can be easil verified that its least period is 20 which does not divide 

.

Accordirng to Theorem 8.7, every linear recurring sequence in a finite filed is ultimately periodic. But it is not

necessarliy periodic in genreal, as is illustrated by simple example of Example 8.10 in the book.

Theorem 8.11

If  is a linear recurring sequence inf a finite filed satisfying the linear recurrence relation, and if the

coefficient  is nonzero, then the sequence  is periodic.

Characteristic polynomial of a linear recurring sequence

Chapter 8, 2 , p 404-406,410

Let  be a -th order homogeneous linear recurring sequence in  satisfying the linear recurrence

relation:

for  where  for .

The polynomial:

is called the characteristic polynomial of the linear recurring sequence. It depends, of course, only on the linear

recurrince relation. If  is the matrix, then it is easily seen that  is identical with the characteristics

polynomial of  in the sens of linear algebra.

s0, s1, … F, p sn+1 = sn + 1 n = 0, 1, …

s0 ∈ F r

F g F

s0, s1, … F sn+1 = g ⋅ sn n = 0, 1, … s0 ≠ 0 r = q − 1

r

sn = gn ⋅ s0 sn+r = sn gn+r ⋅ s0 = gn ⋅ s0 gr = 1 g

F r r = q − 1

F

a0 q − 1 sn+1 = a0 ⋅ sn, a0 ∈ F

sn = an
0 ⋅ s0 sn+r = sn an+r

0 ⋅ s0 = an
0 ⋅ s0 gr = 1

r a0 q − 1 r

a0

k ≥ 2 k

qk − 1 s0, s1, … F5 s0 = 0, s1 = 1

sn+2 = sn+1 + sn n = 0, 1, …

52 − 1 = 24

s0, s1, …

a0 s0, s1, …

s0, s1, … k F

sn+k = ak−1 ⋅ sn+k−1 + ak−2 ⋅ sn+k−2 + ⋯ + a0 ⋅ sn

n = 0, 1, … , aj ∈ F 0 ≤ j ≤ k − 1

f (x) = x k − ak−1 ⋅ x k−1 − ak−2 ⋅ x k−2 − ⋯ − a0 ∈ F[x ]

A f (x)

A

f (x) = det(xI − A)
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with  being the  identity matric over . On the otherhand, then matrix  may be thought of as the

comapion matrix of the monic polynomial .

Theorem 8.21

Let  be a -th order homogeneous linear recurring sequence in  wiht characteristic polynomial 

. If the roots  of  are all distinct then:

where  are elements that are uniquely determined by the inital values of the sequqnce and beling to

the splitting field of  over 

Proof in the book page 405

Example 8.22

Consider the linear recurring sequnce  in  with  and  for 

The characteristic polynomial is 

If , then the roots of  are  and .

Using inital values, we obtain  and .

Hence  and 

By Theorem 8.21 it follows that  for all .

Since  for every nonzero , we deduce that  for all  which is in accordence with

the fact that the least period of the sequence is 3.

In case the characteristic polynomial is irreducible, the elements of the linear recurring sequence can be

represented in terms of a suitable trace function.

Theorem 8.24

Let  be a -th order homogeneous linear recurring sequence in  whose characteristic

polynomial  is irreducible over .

Let  be a root of  in the extension field . Then there exists a uniquely determined  s.t

for 

Proof in the book at page 406.

A polynomial  of degree  is called a primitive polunomial over  if it is a monic polynomial that

is irreducibel over  and has a root  that generates 

I k × k F A

f (x)

s0, s1, … k F

f (x) α1, … , αk f (x)

sn =
k

∑
j=1

βj ⋅ αn
j  for n = 0, 1, …

β1, … , βk

f (x) F

s0, s1, … F2 s0 = s1 = 1 sn+2 = sn+1 + sn

n = 0, 1, …

f (x) = x 2 − x − 1 ∈ F2[x ]

F4 = F2(α) f (x) α1 = α α2 = 1 + α

β1 + β2 = 1 β1α + β2(1 + α) = 1

β1 = α β2 = 1 + α

sn = αn+1 + (a + α)n+1 n ≥ 0

β3 = 1 β ∈ F4 sn+3 = sn n ≥ 0

s0, s1, … k K = F

f (x) K

α f (x) F = Fk θ ∈ F

sn = TrF/K (θαn)

n = 0, 1, …

f ∈ F[x ] m ≥ 1 F

F a ∈ Fm F
∗
m
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Definition 8.32 Maximal period sequence in 

A homogeneous linera recurring sequence in  whose characteristic polynomial is a primitive polynomial over 

 and which has a nonzero initial state vector is called a maximal period sequcen in 

Theorem 8.33 Period of a maximal period sequence in 

Every -th-order maximal period sequence in  is periodic and its least period is equal to the largest possible

value for the least period of any th-order homogeneous linear recurring sequence in  - namely .

Proof:

The fact that the sequence is periodic and that the least periodic is  is a consequence of Theorem 8.28

and 3.16. The remainin assertion f0llows from theorem 8.7. 

Example

The characteristic polynomial of the sequence  in  is  which is monic

and irreducible over  (since neither 0 nor 1 can be a root).

Besides,  that is  is a primitive polynomial over .

Then the sequence given by  in  with initial state  is a second-order

maximal period sequence in  and its period is 

F

F

F F

F

k F

k F qk − 1

qk − 1

□

sn+2 = sn+1 + sn F2 f (x) = x 2 + x + 1

F2

F
∗

2
2 f F2

sn+2 = sn+1 + sn F2 s0 = 1, s1 = 0

F2 22 − 1 = 3


