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Topics: Linearized polynomials, Feedback Shift registers

Linearized polynomials

Chapter 3, 3-4

Linearized polynomials are among the most importatnt types of polynomials which have many applications. The

trace function are among these.

A useful feature of these polynomials is the structure of the set of roots that facilitates the determination of the

roots.

Let  denote a prime power, for this section.

Theorem 3.11 Determening the order

Let  be a finite field of characteristic , and leg  be a polynomial of positive degree and with .

Let  where  are distinct monic irreducible polynomials in 

, be the canonical (relating to) factorization of  in . Then  , where  is the least common

multiple of  and  is the samlles integer with .

A method of determining the order or an irreducible polynomial  in  with  is based on the

observation that the order  of  is the least positive integer s.t .

Furthermore, by collaray 3.4,  divides  , where . Assuming , we start from the

prime factor decomposition.

For  we calculate the residues of . This is accomplished by multiplying

together a suitable combination of the residues of  mod .

If  mod , then  is a multiple of . In the latter case we check to see wheter  is a multiple

of  by calculating the residues of

This computation is repeated for each prime factor of . A key step in the method above is the

factoriztion of the ingeter . There exist extensive tables for the complete factorization of numbers of

this form, especially for the case .

3.12 Definition of Reciprocal polynolial

Let  with  be defined as follows:
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Then the reciprocal polynomial  of  is defined by:

Definition -polynomial

A polynomial of the form:

with coefficients in an extension field  of  is called a -polynomial over 

If the values of  is fixed once and for all or is clear from the context, it is also cutomary to speak of a lineariezed

polynomial. If  is an arbitraty extension field of  and  is a linearized polynomial over  then:

The identity (3.11) follows immediatly from Theorem 1.46 and (3.12) follows from the fact that  for 

and . If  is considered as a vectorspace over  then the linearized polynomial  induceds a linear

operator on .

This is shown in 3.50.

Theorem 3.50 Roots form a linear subspace

Let  be a nonzero -polynomial over  and let the extension field  (notice that s) over  contain all

the roots of . Then each root of  has the same multiplicity, which is either  or a power of , and the

roots form a linear subspace of , where  is regarded as a vector space over 

The proof follows from 3.11 and 3.12 that any linear combination of roots with coefficients in  is again a root,

and so the roots of  form a linear subspace of .

Proof is on page 99 of the book.

3.54 Affine -polynomial

A polynomilal of the form , where  is a -polynomial over  and , it is called

an affine -polynomial over 

An element  is a root of  iff . From 3.15, the equation  is equivelant to:

where .
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The system of linear equations is solved for  and each solution vector ( ) yeilds a root 

 of  in .

The fact that roots are easier to determine for affice polynomials suggest the following method of finding roots

of an arbitraty polynomial  over  of positive degree in an extension field  of  .

First, determine a nonzero affine -polynomial  over  that is divisible by , that is a so-called affine

multiple of .

Next, obtain all the roots of  in  by the method described in first point. Since the roots of  in  must

be among the roots of  in , it suffices the to calculate  for all roots  of  in  in order to locate

the roots of  in .

The only point that remains to be settled is how to determine an affine multiple  of .

This can be achived as follows:

Let  be the degree of . For  calculate the unique polynomial  of degree 

 with .

Then determine element , not all 0, s.t  is a constant polynomial.

This involves  conditions converning the vanishing of the coefficients of , and leads to

a homogenous system of  linear equations for the  unknows .

A homogenous system always has a nontrivial solution. Once the nontrivial solution has been fixed, we have 

 for some .

It follows that

and so

 is a non affine -polynomial  divisible by  We may take  to be a monic polynomial.

3.56 Roots of 

Let  be an affine -polynomial over  of positive degree and let the extension field  of  contain all

the roots of . Then each root of  has the same multiplicity, which is either is  or a power of , and

the roots for an affine subspace of , where  is regarded as a vector space over  Same as 3.50.

Examples of -polynomials:

 is a -polynomial over  for any positive integer ; it is also an -polynomial over  for any

positive integer . It has only one roort  with multiplicity .
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 is a -polynomial over  for any positive integer ; it is also an -polynomial over  for any

positive integer . It has 8 different roots in  which are all elements of  (Ref: Lemma 2.3 and 2.4)

 is a -polynomial over  which has 8 different roots. Since 

 can take only values in  and has degree 8, so  has 8 roots as well as 

 is a -polynomila over  which has 4 different roots.

Feedback shift registers

Chapter 8, 1

Sequcens in finite fileds whose terms depend in a simple manner on their predecessors are of importance for a

variety of applications. Such sequnces are easy to generate by recursive procedures, which is certainly an

advantageous feature from the computational viewpoint, and they also tent to have useful structural properties.

Of particular interes is the case where the terms depend linearly on a fixed number of predecessors, resulting in

a so-called linear recurring sequence.

-th order

Definitions of -th order linear recurring sequences in ;

-th order linear recurrance relasion

homogeneous and inhomogeneous relations

inital values of a sequence.

Let  be a positive integer, and leg  be given elements of a finite field . A sequence 

of elements of  satisfying the relation

for 

is called a -th order linear recurring sequence in .

The terms , which determine the rest of the sequence uniquely, are reffered to as the inital

values.

A relation of the form above is called -th order linear recurrence relation. Itmay also be called "difference

equation".

We speak of homogeneous linear recurrence relation if , otherwise it is inhomogeneous linear recurring

sequence in .

Feedback shift register

The generation of linear recurring sequences can be implemented on a feedback shift register. This is a special

kind of electronic switching circuit handling information in the form of elements of , which are represented

suitably.
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Definitions of the four types of devides used in feedback shift register:

Adder

Constant multiplier

Constant adder

Delay element

Figure is from the book at page 396 or 197 old book.

The first is the adder, which has two inputs and one output, the output being the sum in  of the two inputs.

The second is the constant multiplier, which has one input and results in the output of the product of the

input with a constant element of  (This just says it multiplies it).

The third is a constant adder, whiuch is analogous to a constant multiplier, but adds a constatn element of 

to the input.

The fourth type of device is a delay element e.g "flip-flop", which has one input and one output and is

requlated by and external synchronous clock so that its input at a particular tinme appears as its output one unit

of time later.

A feeback shift register is built by interconnecting a finite number of adders, constant multipliers, constant

adders, and delay elements along a closed loop in such at way taht two outputs are never connected together.

Actually, for the purpose of generating linear recurring sequences, it suffices to connect the componentes in a

rather special manner. A feedback shift register that generates a linear recurring sequence satisfying is show in

this figure.

At the outset, each delay element  contains the initial value  If we think of aritmethic

operations and the transfer alon the wires to be performed instataneously, then after one time unit each  will

contain . Continuing in this manner, we see that theoutput of the feedback shift register is the string of
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elemkent  received in intervals of one time unit. In most of the applications the desired liear

recurring sequence is homogeneous, in whiche case the constant adder is not needed.

Example 1

In order to generate a linear recurring sequnce in  satisfying the homogeneous linear recurrance relation:

for 

Since , no connections are necessary at these points, one may use the following feedback shift

register. 

Example 2

Consider the homogeneous linear recurrence relation:

Since multiplication by a constant in  either preserves or annihilates elements, the effect of a constatnt

multiplier can be simulated by a wire connection or a disconnection. Therefore, a feedback shift register for the

generation of binary homogeneous linear recurring sequences requires only delay elements, adders and wire

connections. 

Figure for above example:

Let  be a -th order linear recurring sequence in  satisyfing:

for .
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This sequence can be generated by the feedback shift register in Example 1. If  is a nonnegative integer, then

after  time units the delay element  will contain .

It is therefore natural to call the vector  (row vector) the -th state vector of

the linear recurring sequence (or of the feedback shift register). The state vector  is

referred to as the initial state vector.

Is is a characteristic feature of linear recurring sequences in finite fields that, after a possibly irregular behaviou

in the beginning, such sequences are eventually of a periodic nature.¢¢¢

n
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T

n
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T


