Lecture: 15-16

[Home][PDF]

Topics: Conjugate elements,Automorphism and Traces

Conjugate elements with repect to a subfiled

In theorem 2.14 we saw that if $\alpha \in \mathbb{F}$ is a root of an irreducible polynomail f over \mathbb{F} then all the roots of f are representeed by:

$$
\alpha, \alpha^{q}, \alpha^{q^{2}}, \ldots, \alpha^{q^{m-1}}
$$

Theorem 2.14:

Irreducible poly in $\mathbb{F}[]$ of degree m has a root in \mathbb{F}.
To address elements of a field which are q-th powers of each other we introduced the notion of conjugates. (Def 2.17)
Two properties of conjugate elements giveen by 2.18 and Corollary 2.19

Prop: 2.18

The conjugates of $\$ \backslash$ alpha \backslash in \backslash mathbb $\left\{F_{-} q\right\}^{\wedge}$ withrespecttoanysubf ield \mid mathbb $\left\{F_{-} q\right\}$ havethesameorderinthegroup |mathbb $\left\{F_{-} q\right\}^{\wedge} \$$.

Proof:

Since \$\mathbb\{F_q\}^
iscyclicgroupbytheorem 2.8 , theresultf ollowsf rom Theorem1.15(ii)andthef actthateverypowerof charateristicof \mid mathbb\{F_q\}isrelativelyprivetotheorderq-1of \mid mathbb\{F_q\}^${ }^{\wedge} \backslash$ square $\$$

Corollary 2.19

Result at 2.18 if α is a primitive element of \mathbb{F}, then so are altso its conjugate with respect to any subfiled of \mathbb{F}

Exmample

Example of conjugate element in $\mathbb{F}_{\mathbf{1 6}}$ with respect to different subfields.
Let $\alpha \in \mathbb{F}_{\mathbf{1 6}}$ be an root of:

$$
f(x)=x^{4}+x+1 \in \mathbb{F}_{\mathbf{2}}
$$

Then the conjugate of α with respect to $\mathbb{F}_{\mathbf{2}}$ are:

$$
\alpha, \alpha^{2}, \alpha^{4}=\alpha+1, \alpha^{8}=\alpha^{2}+1
$$

Each of them being a primitive element of $\mathbb{F}_{\mathbf{1 6}}$
The conjugates of α with respect to $\mathbb{F}_{\mathbf{4}}$ are α and $\alpha^{4}=\alpha+1$.

Automorphism for fields over a subfield

With automorphism σ of \mathbb{F} over $\backslash m a t h b b\left\{F_{-} q\right\}$. We meawn automophisme that fixes an element of \backslash mathbb\{F_q\}.
We then require that:
σ be a one-to-one mapping from \mathbb{F} onto itself.

And the following holds:

$$
\begin{gathered}
\forall \alpha, \beta \in \mathbb{F} \\
\sigma(\alpha+\beta)=\sigma(\alpha)+\sigma(\beta) \\
\sigma(\alpha \cdot \beta)=\sigma(\alpha) \cdot \sigma(\beta) \\
\sigma(a)=a, \forall a \in \mathbb{F}
\end{gathered}
$$

Characterisation of all distinct automorphisms of \mathbb{F} over \mathbb{F}

Definition 2.21

Distinct automiophism of \mathbb{F} over \mathbb{F} are exactly the mapping:

$$
\sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots, \sigma_{m-1}
$$

defineds by $\sigma_{j}(\alpha+\beta)=\sigma_{j}(\alpha)+\sigma_{j}(\beta)$ because of theorem 1.46 , so that σ_{j} is an endomorphism of \mathbb{F}.
Further more $\sigma_{j}(\alpha)=0$ iff $\alpha=0$ and so σ_{j} is one-to-one. Since \mathbb{F} is a finite set, σ_{j} is and epimorphism and therefor an automorphism of \mathbb{F}.

Moreover we have $\sigma_{j}(a)=a$ for all $a \in \mathbb{F}$ by lemma 2.3 and so each σ_{j} is and automophism of \mathbb{F} over \mathbb{F}.
The mapping $\sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots, \sigma_{m-1}$ are distinct since they attain disctinct values for primitieve elements of \mathbb{F}

Now suppose that σ is an arbitraty automorphism of \mathbb{F} over $\$ \backslash m a t h b b\{F-q\}$.
Let β be a primitive element (generator) of $\$ \backslash$ mathbb $\left\{F_{-}\left\{q^{\wedge} m\right\}\right.$ and let

$$
f(x)=x^{m}+a_{m-1} \cdot x^{m-1}+\ldots+a_{0} \in \mathbb{F}_{2} \square
$$

be its minimal polynomial over \mathbb{F}.
Then we have that:

$$
\begin{gathered}
0=\sigma\left(\beta^{m}+a_{m-1} \cdot \beta^{m-1}+\ldots+a_{0}\right) \\
\left.=\sigma\left(\beta^{m}\right)+a_{m-1} \cdot \sigma\left(\beta^{m-1}\right)+\ldots+a_{0}\right)
\end{gathered}
$$

So that $\sigma(\beta)$ is a root of f in \mathbb{F}
It follows from Theorem 2.14 that: $\sigma(\beta)=\beta^{q^{j}}$ for some $j \in[0 \leq j \leq m-1]$
Since σ is a homomophism, we get that $\sigma(\alpha)=\alpha^{q^{j}}$ for all $\alpha \in \mathbb{F}$.
On the basis of 2.21 , it is evident that conjugates of $\alpha \in \mathbb{F}$ with respect to \mathbb{F} are obtainsed by applying all automophisms of \mathbb{F} over \mathbb{F} to element α.

The automorphism of \mathbb{F} over \mathbb{F} form a group with the operation being the usual composition of mappings.
The information provided in Theorem 2.21 shows that this gorup of automophisms of \mathbb{F} over \mathbb{F} is a cyclic group of order m generated by σ_{1}

Construction of irreducible ploynomials

An irreducible polynomial over \mathbb{F} of degree n remains irreducible over \mathbb{F}_{k} iff k and n are relative prime.

Relative prime: Two primes that don't divide eachother. Coprime: where you have common factors.

$$
\begin{gathered}
21=(1),(3), 7,21 \\
24=(1), 2,(3), 4,6,8,12,24
\end{gathered}
$$

They share 1 and 3 as divisors, 21 and 24 are then coprime.

Example 1

Polynomial $x^{2}+x+1$ is irreducible over $\mathbb{F}_{\mathbf{2}}$ degree 2 The it is irreducible over $\mathbb{F}_{\mathbf{2}}$ is n is a odd number.

Example 2

Polynomial $x^{3}+x+1$ is irreducible over $\mathbb{F}_{\mathbf{2}}$ degree 3 Then it is irreducible over $\mathbb{F}_{\mathbf{2}}$ iff n is not dividible by 3 .

Traces of elements of finite fields

Section 3, p50
In this section we adopt again the viewpoint of regarding $F=\mathbb{F}$ of the finite fields $K=\mathbb{F}$ as a vectorspace over K (Chapter 1, section 4).

Then F has dimentions m over K, and if $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ is a basis of F over K, each element $\alpha \in F$ can be uniquerly represented in the form:

$$
\alpha=c_{1} \cdot \alpha_{1}+\ldots+c_{m} \cdot \alpha_{m}
$$

with $c_{j} \in K$ for $1 \leq j \leq m$
We introduce an important mapping fraom $F \rightarrow K$ which will turn out to be linear.
Let $\alpha \in F$, Then the sum of all conjugates of α with respect to K is called "The trace of α over K^{\prime} and is denoted by:

$$
\operatorname{Tr}_{F / K}(\alpha)
$$

Definition 2.22

For $\alpha \in F=\mathbb{F}$ and $K=\mathbb{F}$
The trace of $\operatorname{Tr}_{F / K}(\alpha)$ of α over K is defined by:

$$
\operatorname{Tr}_{F / K}(\alpha)=\alpha+\alpha^{q}+\ldots+\alpha^{q^{m-1}}
$$

If K is a prime subfield of F then $\operatorname{Tr}_{F / K}(\alpha)$ is called the absoulute trace of α and simply denoted $\operatorname{Tr}_{F}(\alpha)$ In other words, the trace of α over K is the sum of all the conjugates of α with respect to K.

Still another description of the trace may be obtained as follows.

Let $f \in K[x]$ be the minimal polynomial of α over K. It's degree d is a divisor of m.
Then $g(x)=f(x)^{m / d} \in K$ is called the charateristic polynomial α over K.
By theorem 2.14, the roots of f in F are given by:

$$
\alpha, \alpha^{q}, \ldots, \alpha^{q^{d-1}}
$$

And then a remark following 2.17 implies that the roots of g in F are precisley the conjucages of α with respect to K.
Hence:

$$
\begin{aligned}
& g(x)=x^{m}+a_{m-1} \cdot x^{m-1}+\ldots+a_{0} \\
& =(x-\alpha) \cdot\left(x-\alpha^{q}\right) \cdot \ldots \cdot\left(x-\alpha^{q^{m-1}}\right.
\end{aligned}
$$

And a comparison of coefficients show that:

$$
\operatorname{Tr}_{F / K}(\alpha)=-a_{m-1}
$$

In particular, $\operatorname{Tr}_{F / K}(\alpha)$ is always an element of K

Theorem 2.23 Holds all 5 properite sof the trace funtion.

Let $K=\mathbb{F}$ and $F=\mathbb{F}$ Then the trace function $T r_{F / K}$ satifies the following properties:
i)

$$
\operatorname{Tr}_{F / K}(\alpha+\beta)=\operatorname{Tr}_{F / K}(\alpha)+\operatorname{Tr}_{F / K}(\alpha), \forall \alpha, \beta \in F
$$

ii)

$$
\operatorname{Tr}_{F / K}(c \cdot \alpha)=c \cdot \operatorname{Tr}_{F / K}(\alpha), \forall c \in K, \forall \alpha \in F
$$

iii)
$\operatorname{Tr}_{F / K}(\alpha)$ is linear tranformation from F onto K, when both F and K are viewed as vectospaces over K.
iv)

$$
\operatorname{Tr}_{F / K}(a)=m \cdot a, \forall a \in K
$$

m is comming from \mathbb{F}
v)

$$
\operatorname{Tr}_{F / K}\left(\alpha^{q}\right)=\operatorname{Tr}_{F / K}(\alpha), \forall \alpha \in \mathbb{F}
$$

Where q is from \mathbb{F}

Proof (p.51)

Main takeway i) and ii) make iii) $\operatorname{Tr}_{F / K}(\alpha)$ into a linear tranformation. It is sufficient to show that $\alpha \in F$ with $\operatorname{Tr}_{F / K}(\alpha) \neq 0$ $\operatorname{Tr}_{F / K}(\alpha)=0$ iff α is a root of the polynomial:

- \in F\$\$

But since this polynomial casn have at most q^{m-1} roots in F and F has q^{m} elements. We have are done, $F_{q^{m-1}} \neq F_{q^{m}} \square$

Theorem 2.25

Lef F be a finite extention of $K=\mathbb{F}$. Then for $\alpha \in F$ we have: $\operatorname{Tr}_{F / K}(\alpha)=0$ iff $\alpha=\beta^{q}-\beta$ for some $\beta \in F$.

Proof

Suppose $\alpha \in F=\mathbb{F}$ with $\operatorname{Tr}_{F / K}(\alpha)=0$ and let β be a root of $x^{q}-x-\alpha$ in some extension field of F. Then $\beta^{q}-\beta=\alpha$ and:

$$
\begin{gathered}
0=\operatorname{Tr}_{F / K}(\alpha) \\
R H S=\alpha+\alpha^{q}+\ldots+\alpha^{q^{q-1}} \\
=\left(\beta^{q}-\beta\right)+\left(\beta^{q}-\beta\right)^{q}+\ldots+\left(\beta^{q}-\beta\right)^{q^{m-1}} \\
=\left(\beta^{q}-\beta\right)+\left(\beta^{q^{2}}-\beta^{q}\right)+\ldots+\left(\beta^{q^{m}}-\beta^{q^{m-1}}\right) \\
=\left(\beta^{q^{m}}-\beta\right)
\end{gathered}
$$

So that $\beta \in F$

Theorem 2.26 Transitivity of Trace

Let K be a finite field. Let F be a finite extension of K and E be a finite extendsion of F
$(K \subseteq F \subseteq E), K$ is the smallest field

$$
\operatorname{Tr}_{E / K}(\alpha)=\operatorname{Tr}_{F / K}\left(\operatorname{Tr}_{E / F}(\alpha)\right), \forall \alpha \in E
$$

Proof is on page 53.

Basis of finite files over their subfields

Chapter 2, 3
If $F=\mathbb{F}$ and $K=\mathbb{F}$ then F can be viewed as an m dimentional vector space over K.
If $\alpha_{1}, \ldots, \alpha_{m}$ is a basis of F over K, then each element α in F can be uniquely represented on the form:

$$
\alpha=c_{1} \cdot \alpha_{1},+\ldots+c_{m} \cdot \alpha_{m}
$$

with $c_{1}, \ldots, c_{m} \in K$
There can be seceral different basis. There are tre particulare basis

- Dual basis
- Polynomial basis
- Normal basis

Definition 2.30 Dual basis

Let K be a finite field and F a finite extendion of K.
Then two bases $\left\{\alpha, \alpha_{m}\right\}$ and $\left\{\beta, \beta_{m}\right\}$ of F over K are said to be dual (complementary) bases if for $1 \leq i, j \leq m$:

$$
\operatorname{Tr}_{F / K}\left(\alpha_{i} \cdot \beta_{j}\right)=\{0, \text { for } i \neq j 1, \text { for } i=j
$$

The dual basis is uniquely determind since its definition implies that the coefficient $c_{j} \alpha, 1 \leq j \leq m$ in 2.04 are given by:

$$
c_{j}(\alpha)=\operatorname{Tr}_{F / K}\left(\beta_{j} \cdot \alpha\right), \forall \alpha \in F
$$

and by Theorem 2.24 the element $\beta_{j} \in F$ is uniquely determined by the linear trasformation c_{j}.

Definition 2.32 Normal basis

Let $K=\mathbb{F}$ and $F=\mathbb{F}$.
Then a basis of F over K on the form $\left\{\alpha, \alpha^{q}, \ldots, \alpha^{q^{m-1}}\right\}$.
Consists of a suitable element $\alpha \in F$ and its conjugate with respect to K is called the normal basis of F over K.
The basis $\left\{\alpha, \alpha^{2}, 1+\alpha+\alpha^{2}\right\}$ of $\mathbb{F}_{\mathbf{8}}$ over $\mathbb{F}_{\mathbf{2}}$
Is a normal basis of $\mathbb{F}_{\mathbf{8}}$ over $\mathbb{F}_{\mathbf{2}}$ since $1+\alpha+\alpha^{2}=\alpha^{4}$.

Definition: Polybasis

A basis F over K of the form:

$$
\begin{gathered}
1, \alpha, \alpha^{2}, \ldots, \alpha^{m-1} \\
5 / 6
\end{gathered}
$$

with α defining element of F over K.
That is $F=K(\alpha)$ is called a polynomial basis.
If α is a primitice element of F then $1, \alpha, \alpha^{2}, \ldots, \alpha^{m-1}$ os a polynomial basis.

Example 2.31

Let $\alpha \in \mathbb{F}_{\mathbf{8}}$ be a root of the irreducivble polynomial

$$
x^{3}+x^{2}+1 \in \mathbb{F}_{\mathbf{2}}[]
$$

Then $\mathbb{F}_{\mathbf{8}}=\mathbb{F}_{\mathbf{2}}(\alpha)$ and $1, \alpha, \alpha^{2}, \alpha^{3}$ is a polynomial basis
On the other hand $1, \alpha, \alpha^{2}, 1+\alpha+\alpha^{2}$ is a basis dual to itself and it si also a normal basis over $\mathbb{F}_{\mathbf{2}}$
Since $1+\alpha+\alpha^{2}=\alpha^{4}$,
then $1, \alpha, \alpha^{2}, 1+\alpha+\alpha^{2}$ is a normal basis over $\mathbb{F}_{\mathbf{2}}$

