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Lecture: 13 - 14

[ Home ][ PDF ]

Topics: Characterization of Finite Fields and Roots of Irreducible
polynomials

Important lecture as it contains various fundamental properties of finite fields and a description of methonds for

constructing finite fields.

The field of integers modulo a prime number is, the most familiar example of a finite field.

Characterization of finite fileds show that every finite filed is of prime-power order and that for every prime

power there exists a finite filed whose number of elemest is exactly that primer power (conversly).

Finite fiels with the same number of elemensts are isomorphic and may therefore be identified.

Irreducible polynomials leads to an interpretation of finite fields as spliltting fields of irreducible polynimilas and

on traces, norms and bases relative to field extensions.

Characterization of Finite Fields

For every prime  the residue class ring  forms a finite field with  elements. (Theorem 1.38).

This may be identitfied with the Galiis field  of order . Definition (1.41).

The fields  play an important role in general field theory since every field of characteristic  must contain an

isomorphic copy of  (Theorem 1.78), and can be thought of as an extension of .

This observation together with the fact that every finite fields has prime characteristic (Corollary 1.45), is

fundamental for the calssification of finite fields.

Lemma 2.1

Lemma with description of the nu,ner of elements in a finite field by the number of elements of its subfield and

edfree over this subfield.

Let  be a finite fileds containg a subfield  with  elements. Then  has  elements, where 

Proof

 is a vector space over , and since  is finite, it is finite-dimentional as a vector space over . If 

, then  has a basis over  consisting of  elements, say . Thus every element

of  ca be uniquely represented in the form  wherre . Since

each  can have  values,  has exactly  elements.

Lemma 2.2

p Z/(p) p

F𝕡 p

F𝕡 p

F𝕡 F𝕡

F K q F qm m = [F : K]

F K F K

[F : K] = m F K m b1, b2, … , bm

F a1b1 + a2b2 + ⋯ + ambm a1, a2, … , am ∈ K

ai q F qm
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Lemma with description of the number of elements in a finite fields as  with  as a prime and  a positive

integer.

Let  be a finite field, Then  has  elements, where the prime  is the characteristic of  and  is the

degree of  over its prime subfield.

Proof

Since  is finite, its characteristic is a prime  according to Corollary 1.45. Therefore the prime subfield  of 

is isomorphic to  by Theorem 1.78 and thus contains  elements. The rest from lemma 2.1.

Starting from the prime fields  we can construct other finite fields by the process of root adjunction.

If  is an irreducible polynimial over  with degree , then by adjoining a root of  to  we get a

finite fields with  elements.

However at this stage it is not clear whether for every positive integer  there exists a irreducible polynomial in 

 of degree . In order to etablish that for every prime  and every  there is a finite filed with 

elements, we use an approach stuggested by the following results.

Lemma 2.3

If  is a finite field with  elements, then every  satifies .

Proof

The identity  is trivial for . On the other hand the nonzero erlement of  form a group of order 

 under multiplication. Thus  for all  with  and multiplication by  yields the desired

result.

Lemma 2.4

If  is a finite field with  elements and  is a subfield of , then the polynomial  in  factors in 

 as:

and  is a splitting field of  over .

Proof

The polynomial  of degree  has at most  roots in . By lemma 2.3 we know that such roots, all the

elements of . Thus the givenn polynomilal splits in  in the indicated manner, and it cannot split in any smaller

field.

We are now able to prove the main characterization theorem for finite fields, the leading idea being contained in

Lemma 2.4.

Theorem 2.5 Existence and Uniqueness of Finite Fields

pn p n

F F pn p F n

F

F p K F

F𝕡 p

F𝕡

f ∈ F𝕡[x] F𝕡 n f F𝕡

pn

n

F𝕡[x] n p n ∈ N pn

F q a ∈ F aq = a

aq = a a = 0 F

q − 1 aq−1 = 1 a ∈ F a ≠ 0 a

F q K F xq − x K[x]

F [x]

xq − x = ∏
a∈F

(x − a)

F xq − x K

xq − x q q F

F F
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For every prime  and every positive integer  there exists a finite field with  elements. Any finite field with 

 elements is isomorphic to the splitting field of  over 

Proof

For  consider  in  and let  be its splitting field over . This polynomial has  distinct roots

in  since its derivative is  in  and so can have no common root with 

Let . Then  is a subfield of  since: i)  contains 0 and 1; ii)  implies by

Theorem 1.46 that  and so  iii) for  and  we have 

 and so .

But on the other hand  must split in  since  contains all its roots. This  and since  has 

elemenst,  is a finite field with  elements.

Uniqueness : Let  be a finite field of  over . Thus the desired result is consequence of the

uniqueness (up to isomorhphism) of splitting fields which was noted in Theorem 1.91

The uniqueness part of Theorem 2.5 provieds the justification for speaking of the finite field (or theGalois field)

with  elements, or the finite filed of order 

We shalle denote this field buy  where it is of course understood that  is a power of the prime characterisitc 

 of .

Theorem 2.6 (Subfield Criterion)

Let  be the finite field with  elements. Then every subfield of  has order  where  is a positive

divisor of . Conversely, if  is a positive divisor of , then there is exactly one subfield of  with 

elements.

Proof

It is clear that a subfield  of  has order  for some positive integer . Lemma 2.1 shows that 

must be a power of , and so  is necessarily a divisor of .

Conversely, if  is a positive divisor of , then  divides  and so  divides  in 

. Consequently,  divides  in . Thus ever root of  is a root of 

and so belongs to . If follows that  must contain as a subfield a splitting field of  over  and as

we have seen in the proof of Theorem 2.5, such a splitting field has order . If there werer two dstinct

subfields of order  in , they would together contain more than  roots of  in , an obvious

contraditcion.

The proof of Theorem 2.6, shows that the unique subfield of  of order , where  is a positive divisior of 

, consists precisely of the roots of the polynomial  in 

2.7 Example of a field

The subfield of the finite field  can be determined by listting all positive divisors of 30. The containment

relastions between these various subfields are displayed in the following diagram.

p n pn

q = pn xq − x F𝕢

q = pn xq − x F𝕡[x] F F𝕡 q

F qxq−1 − 1 = −1 F𝕢[x] xq − x

S = a ∈ F : aq − a = 0 S F S a, b ∈ S

(a − b)q = aq − bq = a − b a − b ∈ S a, b ∈ S b ≠ 0

(ab−1)q = aqb−q = ab−1 ab−1 ∈ S

xq − x S S F = S S q

F q

F xq − x F𝕡

q q

F𝕢 q

p F𝕢

F𝕢 q = pn
F𝕢 pm m

n m n F𝕢 pm

K F𝕢 pm m ≤ n q = pn

pm m n

m n pm − 1 pn − 1 xpm−1 − 1 xpn−1 − 1

F𝕡[x] xxm

− x xpn

− x = xq − x F𝕢 xpn

− x xq − x

F𝕢 F𝕢 xpm

− x F𝕢

pm

pm
F𝕢 pm xpm

− x F𝕢

F𝕢𝕟 pm m n

xpm

− x ∈ F𝕡[x] F𝕡𝕟

F𝟚𝟛𝟘
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By Theorem 2.6, the containment relations are equivalent to divisibility relastions among the positive divisors of

30.

For a finite filed  we denote by  the multiplicative gorup of nonzero elements of . The following result

enunciates a useful property of this group.

F𝕢 F𝕢

∗
F𝕢
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Theorem 2.8

For every finite field  the multiplicative group  of nonzero elements of  is cyclic.

Proof

We may assume . Let  be the prime factor decomposition of the order  of

the group  For every  , the polynomila  has at most  roots in 

Since  it follows that there are nonzero elements in  that are not roots of this polynomial. Let  be

such an element and set . We have  hence the order of  is a divisor of  and is therefor

of the form  with . On the other hansd

and so the order of  is .

We clain that the element  has order . Suppose on the contrary, that the order of  is a proper

devisor of  and is therefor a divisor of at least one of the  integers , say of , then we

have:

Now if  then  divides  and hence . Therefor . This implieds that the

order of  must divide , which is impossible since the order og  is  Thus  is a cyclic group with

generator .

2.9 Definitions Primitive element

A generator of the cyclic group  is called a primitive element of 

It follows from Theorem 1.15(v) that  containts  primitive elements, where  is Euler's function. The

existence of primitive elements can be used to show a result that implies, in particular, that every finite field can

be thought of as a simple algebraic extension of its prime subfield.

2.10 Theorem

Let  be a finite filed and  a finite extension field. Then  is a simple algebraic extension of  and every

primitive element of  can serve as a defining element of  over .

Proof

Let  be a primitive element of . We clearly have . On the other hand,  contains  and all

powers of , and so all elements of . Therefor 

2.11 Corollary

For every finite field  and every positive integer  there exists an irreducible polynomial in  of degree .

Proof

F𝕢 F𝕢

∗
F𝕢

q ≥ 3 h = p
r1

1 p
r2

2 … prm
m h = q − 1

F𝕢

∗ i, 1 ≤ i ≤ m xh/pi − 1 h/pi F𝕢

h/pi < h F𝕢 ai

bi = a
h/p

ri
i

i b
p

ri
i

i = 1 bi pri

i

psi

i 0 ≤ si ≤ ri

b
p

ri−1
i

i = a
h/pi

i ≠ 1

bi p
ri

i

b = b1b2 … bm h b

h m h/pi, 1 ≤ i ≤ m h/pi

1 = bh/pi = b
h/p1

1 b
h/p1

2 … b
h/p1
m

2 ≤ i ≤ m pri

i h/p1 b
h/p1

i = 1 b
h/p1

1 = 1

b1 h/p1 b1 pr1

1 F𝕢

∗

b

F𝕢

∗
F𝕢

F𝕢 ϕ(q − 1) ϕ

F𝕢 F𝕣 F𝕣 F𝕢

F𝕣 F𝕣 F𝕢

δ F𝕣 F𝕢(δ) ⊆ FR𝕣 F𝕢(δ) 0

δ F𝕣 F𝕣 = F𝕢(δ)

F𝕢 n F𝕢[x] n



13_14_lecture.md 5/27/2020

6 / 7

Let  be an extension field of  of order , so that . By Theorem 2.10 we have  for

some  Then the minimal polynomial of  over  is an irreducible polynomial in  of degree ,

according to Theorems 1.82(i) and 1.86(ii).

Roots of Irreducible polynomials

In this section we collect some information about the set of roots of an irreducible polynomial over a finite field

2.12 Lemma

Let  be an irreducible polynomials over a finite field  and let  be a root of  in an extension field of

. Then for a polynomial  we have  if an only if  divides .

Proof

Let  be the leading coefficient of  and set  Then  is a monic irreducible polynomial in 

with  and so it is the minimal polynomial of  over  in the sens of Definition 1.81. The rest follows

from Theorem 1.82(ii).

2.13 Lemma

Let  be an irreducible polynomial over  of degree . Then  divdes  if and only if 

divides .

Proof

Suppose  divides . Let  be a root of  in the splitting field of  over  Then , so that 

. It follows that  is a subfield of .

But since  and , Theorem 1.84 shows that  divides . Conversely, if 

divides , then Theorem 2.6 implies that  contains  as a subfield. If  is a root of  in the splitting field of 

 over , then  and so .

Consequently, we have , hence , and thus  is a root of  We infer then from

Lemma 2.12 that  divides 

2.14 Theorem

If  is an irreducible polynomial in  of degree , then  has a root  in . Furthermore all the roots of 

are simple and are given by the  distinc elements  of .

Proof

Let  be a root of  in the splitting field of  over . Then  , hence  and in

particular . Next we show that if  is a root of , then  is also a root of . Write 

 with  for . Then, using Lemma 2.3 and Theorem 1.46,

we get:

F𝕣 F𝕢 qn [F𝕣 : F𝕢] = n F𝕣 = F𝕢(δ)

δ ∈ F𝕣 δ F𝕢 F𝕢[x] n

f ∈ F𝕢[x] F𝕢 α f

F𝕢 h ∈ F𝕢[x] h(α) = 0 f h

a f g(x) = a−1f(x) g F𝕢[x]

g(α) = 0 α F𝕢

f ∈ F𝕢[x] F𝕢 m f(x) xqn

− x m

n

f(x) xqn

− x α f f F𝕢 αqn

= α

α ∈ F
𝕢

𝕟 F𝕢(α) F
𝕢

𝕟

[F𝕢(α) : F𝕢] = m [F
𝕢

𝕟 : F𝕢] = n m n m

n F
𝕢𝕟 F

𝕢𝕟 α f

f F𝕢 [F𝕢(α) : F𝕢] = m F𝕢(α) = F
𝕢𝕞

α ∈ F
𝕢𝕟 αqn

= α α xqn

− x ∈ F𝕢[x]

f(x) xqn

− x

f F𝕢[x] m f α F
𝕞

𝕢
f

m α, αq, αq2
, … , αqm−1

F
𝕢𝕞

α f f F𝕢 [F𝕢(α) : F𝕢] = m F𝕢(α) = F
𝕢𝕞

α ∈ F𝕢𝕞 β ∈ F𝕢𝕞 f βq f

f(x) = amxm + ⋯ + \a1x + a0 ai ∈ F𝕢 0 ≤ i ≤ m

f(βq) = amβqm + ⋯ + aqβq + a0

q q
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Therefor, the elements  are roots of . It remains to prove that these elements are

distinct. Suppose, on the contrary, that  for some integers  and  with  By

raising this identity to the power of  we get:

It follows then from Lemma 2.12 that  divides . By Lemma 2.13, this is only possible if 

divides . But we have , and so we arrive at a contradiction.

2.15 Corollary

Let  be an irreducible polynomial in  of degree . Then the splitting field of  over  is given by .

Proof: Theorem 2.14 shows that  splits in . Furthermore  for a

root  of  in  where the seciond identity is taken from the proof of Theorem 2.14.

2.16 Corollary

Any two irreducible polynomials in  of the same degree have isomorphic splitting fields.

= aq
mβqm + ⋯ + a

q
1βq + a

q
0

= (amβm + ⋯ + a1β + a0)q

= f(β)q

= 0

α, αa, αq2

, … , αqm−1

f

αqj

= αqk

j k 0 ≤ j < k ≤ m − 1

qm−k

αqm−k+j

= αqm

= α

f(x) xqm−k+j

− x m

m − k + j 0 < m − k + j < m

f F𝕢[x] m f F𝕢 F
𝕢

𝕞

f F𝕢𝕞 F𝕢(α, αq, αq2

, … , αqm−1

) = F𝕢(α) = F𝕢𝕞

α f F
𝕢

𝕞

F𝕢[x]


