INF 240 - Exercise problems - 8

Nikolay Kaleyski

Recall that if $F = \mathbb{F}_{q^m}$ is an extension field of $K = \mathbb{F}_q$, then for any $a \in F$, its *conjugates with respect to* K are the elements $a, a^q, a^{q^2}, \ldots, q^{q^{m-1}}$. The conjugates of an element a behave "similarly" to a in some respects: see 2.14, 2.18, and 2.19 for some properties of the conjugates.

The sum of all the conjugates of an element $a \in F$ with respect to Kis the value of the *trace function* $\operatorname{Tr}_{F/K}(a)$. The trace of an element is an important property which has many applications in theory and practice. Here is just one example: showing that some equation f(x) = g(x) has no solution $x \in F$ is usually a difficult problem, especially if the number of elements in Fis very large (or unknown); however, sometimes it is possible to show that, say, $\operatorname{Tr}_{F/K}(f(x)) = 0$ for any $x \in F$ but $\operatorname{Tr}_{F/K}(g(x))$ is always non-zero; this then immediately shows that the equation f(x) = g(x) is not solvable. The definition and properties of the trace function are given in 2.22, 2.23, 2.26.

Recall also that an extension $F = \mathbb{F}_{q^m}$ of $K = \mathbb{F}_q$ can be seen as an *m*dimensional vector space over K; in other words, every element $a \in F$ can be written as an *m*-tuple $a = (a_1, a_2, \ldots, a_m)$ of elements $a_i \in K$. Since Fis a vector space in this respect, it also has a basis (B_1, B_2, \ldots, B_m) , i.e. a collection of elements $B_i \in F$ such that any element A of F can be written as a linear combination $A = c_1B_1 + c_2B_2 + \cdots + c_mB_m$ for $c_i \in K$. A vector space (and hence an extension field) can have many different bases in general, and we define three special types of bases: dual and self-dual bases, polynomial bases, and normal bases. See 2.30, 2.32 for more details.

Exercise 1. Consider the extension field $\mathbb{F}_{2^3} = \{\alpha^2 + c_1\alpha + c_0 : c_1, c_0 \in \mathbb{F}_2\}$ where α is a root of the irreducible polynomial $p(x) = x^3 + x + 1$ in \mathbb{F}_2 .

- Find the conjugates with respect to F₂ of the elements a = α² + α, b = 1 and c = α + 1;
- 2. Find all primitive elements of \mathbb{F}_{2^3} ;
- 3. Compute the absolute traces $Tr(\alpha^2 + \alpha)$, Tr(1), and $Tr(\alpha + 1)$;
- Using the properties of the trace function in Theorem 2.23, show that for any x ∈ F₂₃, we have Tr(x² + x) = 0;
- 5. Show that the equation $x^2 + x + \alpha^2 + 1 = 0$ has no solution $x \in \mathbb{F}_{2^3}$.

Exercise 2. Assume the setting of Example 2.31, i.e. consider \mathbb{F}_{2^3} as constructed via the irreducible polynomial $q(x) = x^3 + x^2 + 1$ in \mathbb{F}_2 . Verify that $(\alpha, \alpha^2, 1 + \alpha + \alpha^2)$ is indeed a self-dual basis of \mathbb{F}_{2^3} over \mathbb{F}_2 .

Exercise 3. Consider the polynomial $f(x) = x^3 + 2x + 1$ in \mathbb{F}_3 .

- 1. Is f(x) irreducible in \mathbb{F}_3 ?
- 2. Is f(x) irreducible in \mathbb{F}_{3^2} ? What about \mathbb{F}_{3^6} ? What about \mathbb{F}_{3^8} ?
- 3. What are all natural numbers m for which f(x) is irreducible in \mathbb{F}_{3^m} ?

Exercise 4. Find an irreducible polynomial of degree 3 in $\mathbb{F}_{3^{25}}$.

Exercise 5. Show that the absolute trace $\operatorname{Tr} : \mathbb{F}_{3^k} \to \mathbb{F}_3$ satisfies $\operatorname{Tr}(a^9 + b + 2b^3) = \operatorname{Tr}(a)$ for any $a, b \in \mathbb{F}_{3^k}$.

The following exercises are taken from Lidl & Niederreiter's Finite fields.

Exercise 6. Show that any polynomial of degree 2 in $\mathbb{F}_q[x]$ splits into linear factors over \mathbb{F}_{q^2} .

Exercise 7. Find all automorphisms of a finite field.

Exercise 8. Let F be a finite extension of the finite field K of characteristic p. Show that $\operatorname{Tr}_{F/K}(a^{p^n}) = (\operatorname{Tr}_{F/K}(a))^{p^n}$ for any $a \in F$ and any natural number n.

Exercise 9. Show that if (a_1, \ldots, a_m) is a basis of $F = \mathbb{F}_{q^m}$ over $K = \mathbb{F}_q$, then $\operatorname{Tr}_{F/K}(a_i) \neq 0$ for at least one i among $1 \leq i \leq m$.