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Nikolay Kaleyski

Exercise 1. Let a be some non-zero element of F. If we multiply all elements
of F by a, we will once again obtain all elements of F (but in a different order).
Formally, this is due to the function fa : x 7→ a ·x being a permutation, and this
is because a has an inverse a−1 and so fa is invertible (that is, if we know that
the output of the function is y and we want to find x such that a·x = y, we simply
have to multiply y by a−1). For example, if we consider F7 = {0, 1, 2, 3, 4, 5, 6}
and a = 3, we get the mapping x 7→ 3x given in Table 1.

x 3x
0 0
1 3
2 6
3 2
4 5
5 1
6 4

Table 1: Example of a mapping x 7→ ax

Since we get the same set of elements, their sum must also be the same, i.e.
for any a 6= 0, we have ∑

x∈F
x =

∑
x∈F

ax.

Therefore

0 =
∑
x∈F

x−
∑
x∈F

ax =
∑
x∈F

x(1− a) = (1− a)
∑
x∈F

x.

If F 6= F2, we can always select an element a such that a 6= 0 and a 6= 1.
Then (1 − a) 6= 0, and since finite fields have no zero divisors, the equality
(1− a)

∑
x∈F x = 0 implies

∑
x∈F x = 0.

Exercise 2. Suppose we have a2 + ab + b2 = 0. Assume that b 6= 0; this will
lead us to a contradiction which will prove that b = 0 and hence also a = 0. If
b 6= 0, we can divide both sides of the equation by b2 to get(a

b

)2
+
a

b
+ 1 = 0.

If we denote c = a/b, this becomes
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c2 + c+ 1 = 0.

It is easy to see that the polynomial f(x) = x2 + x+ 1 is irreducible over F2

since f(0) = f(1) = 1 and hence it has no roots. Since deg(f) = 2, its roots lie
in the extension field F22 . Thus, if f(c) = c2 + c + 1 = 0, i.e. if c is a root of
f , then c must be in F22 (but not in F2). However, this is impossible, since n is
odd and F22 is a subfield of F2n if and only if 2 divides n, i.e. if n is even. We
thus get a contradiction with our assumption that b 6= 0. From a2 + ab+ b2 = 0
and b = 0, we then get a2 = 0 which implies a = 0.

Exercise 3. 1. The structure of F7 is simply F7 = {0, . . . , 6}. To check
whether some a ∈ F7 is a primitive element, i.e. to check whether a
generates the multiplicative group F∗7, we simply keep computing powers a,
a2, a3, . . . of a until we loop, and we check to see whether these powers
encompass all elements of F7. Clearly, 1 cannot generate anything other
than itself. For the remaining elements, we get:

• 20 = 1 → 21 = 2 → 22 = 4 → 23 = 1;

• 30 = 1 → 31 = 3 → 32 = 2 → 33 = 6 → 34 = 4 → 35 = 5 → 36 = 1;

• 40 = 1 → 41 = 4 → 42 = 2 → 43 = 1;

• 50 = 1 → 51 = 5 → 52 = 4 → 53 = 6 → 54 = 2 → 55 = 3 → 56 = 1;

• 60 = 1 → 61 = 6 → 62 = 1.

Thus, 3 and 5 are the primitive elements of F7.

2. In the same way as for F7, we find that the primitive elements of F17 are
3, 5, 6, 7, 10, 11, 12, 14.

3. Since F9 = F32 is not a prime field, its structure is more complicated and
we need an irreducible polynomial to represent its elements. Let us take
say p(x) = x2+x+2, which is easily seen to be irreducible in F3[x] since it
has no roots. Taking α to be a root of p(x), i.e. p(α) = α2+α+2 = 0, we
want to check whether α is a primitive element of F9. To do this, we keep
multiplying α with itself until we loop; in the multiplication process, we
reduce powers αk of α with k > 1 using the identity α2 = −α−2 = 2α+1.
We obtain the following Table 2.

i αi

0 1
1 α
2 α2 = 2α+ 1
3 2α2 + α = 2(2α+ 1) + α = 2α+ 2
4 2α2 + 2α = 2(2α+ 1) + 2α = 2
5 2α
6 2(2α+ 1) = α+ 2
7 α2 + 2α = 2α+ 1 + 2α = α+ 1
8 α2 + α = 2α+ 1 + α = 1

Table 2: Generating all elements of F∗7 as powers of α
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Since we obtain 8 distinct elements, we have obtained all non-zero elements
of F9 and have thus generated F∗9; hence, α is a primitive element.

Since, as we have seen above, all non-zero elements of F9 can be repre-
sented as powers of α, it remains to check whether these remaining pow-
ers are primitive elements themselves. We can simplify our work a bit by
applying Theorem 2.18 and Corollary 2.19 (as indexed in Lidl & Nieder-
reiter). Since F9 = F32 , we have that a ∈ F∗9 is primitive if and only if
a3 is primitive. Thus, we immediately have that α3 is primitive (applying
this again would tell us that α9 is primitive, but since α8 = 1, this is
simply α9 = α). If we consider all powers of α2, we have (α2)2 = α4,
(α2)3 = α6, and (α2)4 = α8 = 1, so that we loop before generating all
elements. Thus. α2 (and also α6 by Theorem 2.18) is not primitive. Sim-
ilarly, since (α4)2 = α8 = 1, α4 is not primitive. Finally, for α5, we have
(α5)2 = α2, (α5)3 = α7, (α5)4 = α4, (α5)5 = α, (α5)6 = α6, (α5)2 = α3,
(α6)6 = 1. Thus, α5 is primitive, and so is (α6)3 = α7.

Exercise 4. This can be shown in the same way as in the proof of Theorem 2.8
in Lidl & Niederreiter. Suppose that M is a finite sub-group of the multiplicative
group F∗ of some field F, and let h = pr11 . . . prmm be its prime factorization. For
every i in the range 1 ≤ i ≤ m, observe that the polynomial xh/pi − 1 has at
most h/pi < h roots, and so we can pick some ai ∈M which is not a root of that

polynomial, i.e. such that a
h/pi

i 6= 1. If we take bi = a
h/p

ri
i

i , then b
p
ri
i

i = ahi = 1,
and thus the order of bi is a divisor of prii . Since pi is prime, this divisor can

only be of the form psii for some si ≤ ri. On the other hand, b
p
ri−1

i
i = a

h/pi

i 6= 1
by the choice of ai, so that the order of bi must be precisely prii .

Having defined such bi for all i in 1 ≤ i ≤ m, we now take b = b1b2 . . . bm,
and claim that b generates M . If it does not, then its order must be a divisor
of h strictly less than h itself. Thus, the order of b must be a divisor of h/pi
for some i, say of h/p1. This means that bh/p1 = b

h/p1

1 . . . b
h/pm
m = 1. For all

other i, i.e. for i 6= 1, we have that prii divides h/p1, and so b
h/pi

i = 1. Thus

b
h/p1

1 = 1. But we know that the order of b1 is pr11 , and this cannot be a divisor

of b
h/p1

1 since h/p1 contains one power of p1 less in its factorization. We have
thus obtained a contradiction to the assumption that the order of b is strictly
less than h, and so b must indeed be a generator of M .

Exercise 5. Suppose F∗ is cyclic and generated by α. Let β = α−1 be the
inverse of this generator. Since F ∗ is cyclic, there exists some positive integer
k such that αk = β. Then αk+1 = α · α−1 = 1, so αk+1, αk+2, . . . simply
repeats the sequence α, α2, . . . . Therefore, all elements of F∗ can be expressed
as powers αi with i ≤ k, and since k is a concrete and fixed number, there can
only be finitely many elements in F∗.

Exercise 6. We know that Fpm is a subfield of Fpn if and only if m divides
n, and that all subfields of Fpn are of this form. Therefore, the subfields of
F542 are precisely all finite fields of the form F5m with m dividing 42; thus, we
just have to find all the divisors of 42. Since 42 = 2 · 3 · 7, we can easily see
that K = {1, 2, 3, 6, 7, 14, 21, 42} are precisely all divisors of 42, and so F5k with
k ∈ K are precisely all subfields of F42

5 .
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