INF 240 - Exercise problems - 7
 Solutions

Nikolay Kaleyski

Exercise 1. Let a be some non-zero element of \mathbb{F}. If we multiply all elements of \mathbb{F} by a, we will once again obtain all elements of \mathbb{F} (but in a different order). Formally, this is due to the function $f_{a}: x \mapsto a \cdot x$ being a permutation, and this is because a has an inverse a^{-1} and so f_{a} is invertible (that is, if we know that the output of the function is y and we want to find x such that $a \cdot x=y$, we simply have to multiply y by a^{-1}). For example, if we consider $\mathbb{F}_{7}=\{0,1,2,3,4,5,6\}$ and $a=3$, we get the mapping $x \mapsto 3 x$ given in Table 1 .

x	$3 x$
0	0
1	3
2	6
3	2
4	5
5	1
6	4

Table 1: Example of a mapping $x \mapsto a x$
Since we get the same set of elements, their sum must also be the same, i.e. for any $a \neq 0$, we have

$$
\sum_{x \in \mathbb{F}} x=\sum_{x \in \mathbb{F}} a x .
$$

Therefore

$$
0=\sum_{x \in \mathbb{F}} x-\sum_{x \in \mathbb{F}} a x=\sum_{x \in \mathbb{F}} x(1-a)=(1-a) \sum_{x \in \mathbb{F}} x .
$$

If $\mathbb{F} \neq \mathbb{F}_{2}$, we can always select an element a such that $a \neq 0$ and $a \neq 1$. Then $(1-a) \neq 0$, and since finite fields have no zero divisors, the equality $(1-a) \sum_{x \in \mathbb{F}} x=0$ implies $\sum_{x \in \mathbb{F}} x=0$.

Exercise 2. Suppose we have $a^{2}+a b+b^{2}=0$. Assume that $b \neq 0$; this will lead us to a contradiction which will prove that $b=0$ and hence also $a=0$. If $b \neq 0$, we can divide both sides of the equation by b^{2} to get

$$
\left(\frac{a}{b}\right)^{2}+\frac{a}{b}+1=0
$$

If we denote $c=a / b$, this becomes

$$
c^{2}+c+1=0 .
$$

It is easy to see that the polynomial $f(x)=x^{2}+x+1$ is irreducible over \mathbb{F}_{2} since $f(0)=f(1)=1$ and hence it has no roots. Since $\operatorname{deg}(f)=2$, its roots lie in the extension field $\mathbb{F}_{2^{2}}$. Thus, if $f(c)=c^{2}+c+1=0$, i.e. if c is a root of f, then c must be in $\mathbb{F}_{2^{2}}$ (but not in \mathbb{F}_{2}). However, this is impossible, since n is odd and $\mathbb{F}_{2^{2}}$ is a subfield of $\mathbb{F}_{2^{n}}$ if and only if 2 divides n, i.e. if n is even. We thus get a contradiction with our assumption that $b \neq 0$. From $a^{2}+a b+b^{2}=0$ and $b=0$, we then get $a^{2}=0$ which implies $a=0$.

Exercise 3. 1. The structure of \mathbb{F}_{7} is simply $\mathbb{F}_{7}=\{0, \ldots, 6\}$. To check whether some $a \in \mathbb{F}_{7}$ is a primitive element, i.e. to check whether a generates the multiplicative group \mathbb{F}_{7}^{*}, we simply keep computing powers a, a^{2}, a^{3}, \ldots of a until we loop, and we check to see whether these powers encompass all elements of \mathbb{F}_{7}. Clearly, 1 cannot generate anything other than itself. For the remaining elements, we get:

- $2^{0}=1 \rightarrow 2^{1}=2 \rightarrow 2^{2}=4 \rightarrow 2^{3}=1$;
- $3^{0}=1 \rightarrow 3^{1}=3 \rightarrow 3^{2}=2 \rightarrow 3^{3}=6 \rightarrow 3^{4}=4 \rightarrow 3^{5}=5 \rightarrow 3^{6}=1$;
- $4^{0}=1 \rightarrow 4^{1}=4 \rightarrow 4^{2}=2 \rightarrow 4^{3}=1$;
- $5^{0}=1 \rightarrow 5^{1}=5 \rightarrow 5^{2}=4 \rightarrow 5^{3}=6 \rightarrow 5^{4}=2 \rightarrow 5^{5}=3 \rightarrow 5^{6}=1$;
- $6^{0}=1 \rightarrow 6^{1}=6 \rightarrow 6^{2}=1$.

Thus, 3 and 5 are the primitive elements of \mathbb{F}_{7}.
2. In the same way as for \mathbb{F}_{7}, we find that the primitive elements of \mathbb{F}_{17} are $3,5,6,7,10,11,12,14$.
3. Since $\mathbb{F}_{9}=\mathbb{F}_{3^{2}}$ is not a prime field, its structure is more complicated and we need an irreducible polynomial to represent its elements. Let us take say $p(x)=x^{2}+x+2$, which is easily seen to be irreducible in $\mathbb{F}_{3}[x]$ since it has no roots. Taking α to be a root of $p(x)$, i.e. $p(\alpha)=\alpha^{2}+\alpha+2=0$, we want to check whether α is a primitive element of \mathbb{F}_{9}. To do this, we keep multiplying α with itself until we loop; in the multiplication process, we reduce powers α^{k} of α with $k>1$ using the identity $\alpha^{2}=-\alpha-2=2 \alpha+1$. We obtain the following Table 2.

i	α^{i}
0	1
1	α
2	$\alpha^{2}=2 \alpha+1$
3	$2 \alpha^{2}+\alpha=2(2 \alpha+1)+\alpha=2 \alpha+2$
4	$2 \alpha^{2}+2 \alpha=2(2 \alpha+1)+2 \alpha=2$
5	2α
6	$2(2 \alpha+1)=\alpha+2$
7	$\alpha^{2}+2 \alpha=2 \alpha+1+2 \alpha=\alpha+1$
8	$\alpha^{2}+\alpha=2 \alpha+1+\alpha=1$

Table 2: Generating all elements of \mathbb{F}_{7}^{*} as powers of α

Since we obtain 8 distinct elements, we have obtained all non-zero elements of \mathbb{F}_{9} and have thus generated \mathbb{F}_{9}^{*}; hence, α is a primitive element.
Since, as we have seen above, all non-zero elements of \mathbb{F}_{9} can be represented as powers of α, it remains to check whether these remaining powers are primitive elements themselves. We can simplify our work a bit by applying Theorem 2.18 and Corollary 2.19 (as indexed in Lidl \mathcal{F} Niederreiter). Since $\mathbb{F}_{9}=\mathbb{F}_{3^{2}}$, we have that $a \in \mathbb{F}_{9}^{*}$ is primitive if and only if a^{3} is primitive. Thus, we immediately have that α^{3} is primitive (applying this again would tell us that α^{9} is primitive, but since $\alpha^{8}=1$, this is simply $\alpha^{9}=\alpha$). If we consider all powers of α^{2}, we have $\left(\alpha^{2}\right)^{2}=\alpha^{4}$, $\left(\alpha^{2}\right)^{3}=\alpha^{6}$, and $\left(\alpha^{2}\right)^{4}=\alpha^{8}=1$, so that we loop before generating all elements. Thus. α^{2} (and also α^{6} by Theorem 2.18) is not primitive. Similarly, since $\left(\alpha^{4}\right)^{2}=\alpha^{8}=1, \alpha^{4}$ is not primitive. Finally, for α^{5}, we have $\left(\alpha^{5}\right)^{2}=\alpha^{2},\left(\alpha^{5}\right)^{3}=\alpha^{7},\left(\alpha^{5}\right)^{4}=\alpha^{4},\left(\alpha^{5}\right)^{5}=\alpha,\left(\alpha^{5}\right)^{6}=\alpha^{6},\left(\alpha^{5}\right)^{2}=\alpha^{3}$, $\left(\alpha^{6}\right)^{6}=1$. Thus, α^{5} is primitive, and so is $\left(\alpha^{6}\right)^{3}=\alpha^{7}$.

Exercise 4. This can be shown in the same way as in the proof of Theorem 2.8 in Lidl $\xi^{\text {N }}$ Niederreiter. Suppose that M is a finite sub-group of the multiplicative group \mathbb{F}^{*} of some field \mathbb{F}, and let $h=p_{1}^{r_{1}} \ldots p_{m}^{r_{m}}$ be its prime factorization. For every i in the range $1 \leq i \leq m$, observe that the polynomial $x^{h / p_{i}}-1$ has at most $h / p_{i}<h$ roots, and so we can pick some $a_{i} \in M$ which is not a root of that polynomial, i.e. such that $a_{i}^{h / p_{i}} \neq 1$. If we take $b_{i}=a_{i}^{h / p_{i}^{r_{i}}}$, then $b_{i}^{p_{i}^{r_{i}}}=a_{i}^{h}=1$, and thus the order of b_{i} is a divisor of $p_{i}^{r_{i}}$. Since p_{i} is prime, this divisor can only be of the form $p_{i}^{s_{i}}$ for some $s_{i} \leq r_{i}$. On the other hand, $b_{i}^{p_{i}^{r_{i}-1}}=a_{i}^{h / p_{i}} \neq 1$ by the choice of a_{i}, so that the order of b_{i} must be precisely $p_{i}^{r_{i}}$.

Having defined such b_{i} for all i in $1 \leq i \leq m$, we now take $b=b_{1} b_{2} \ldots b_{m}$, and claim that b generates M. If it does not, then its order must be a divisor of h strictly less than h itself. Thus, the order of b must be a divisor of h / p_{i} for some i, say of h / p_{1}. This means that $b^{h / p_{1}}=b_{1}^{h / p_{1}} \ldots b_{m}^{h / p_{m}}=1$. For all other i, i.e. for $i \neq 1$, we have that $p_{i}^{r_{i}}$ divides h / p_{1}, and so $b_{i}^{h / p_{i}}=1$. Thus $b_{1}^{h / p_{1}}=1$. But we know that the order of b_{1} is $p_{1}^{r_{1}}$, and this cannot be a divisor of $b_{1}^{h / p_{1}}$ since h / p_{1} contains one power of p_{1} less in its factorization. We have thus obtained a contradiction to the assumption that the order of b is strictly less than h, and so b must indeed be a generator of M.

Exercise 5. Suppose \mathbb{F}^{*} is cyclic and generated by α. Let $\beta=\alpha^{-1}$ be the inverse of this generator. Since F^{*} is cyclic, there exists some positive integer k such that $\alpha^{k}=\beta$. Then $\alpha^{k+1}=\alpha \cdot \alpha^{-1}=1$, so $\alpha^{k+1}, \alpha^{k+2}$, ... simply repeats the sequence $\alpha, \alpha^{2}, \ldots$. Therefore, all elements of \mathbb{F}^{*} can be expressed as powers α^{i} with $i \leq k$, and since k is a concrete and fixed number, there can only be finitely many elements in \mathbb{F}^{*}.

Exercise 6. We know that $\mathbb{F}_{p^{m}}$ is a subfield of $\mathbb{F}_{p^{n}}$ if and only if m divides n, and that all subfields of $\mathbb{F}_{p^{n}}$ are of this form. Therefore, the subfields of $\mathbb{F}_{5^{42}}$ are precisely all finite fields of the form $\mathbb{F}_{5^{m}}$ with m dividing 42 ; thus, we just have to find all the divisors of 42 . Since $42=2 \cdot 3 \cdot 7$, we can easily see that $K=\{1,2,3,6,7,14,21,42\}$ are precisely all divisors of 42 , and so $\mathbb{F}_{5^{k}}$ with $k \in K$ are precisely all subfields of \mathbb{F}_{5}^{42}.

