INF' 240 - Exercise problems - 7
Solutions

Nikolay Kaleyski

Exercise 1. Let a be some non-zero element of F. If we multiply all elements
of F by a, we will once again obtain all elements of F (but in a different order).
Formally, this is due to the function f, : x — a-x being a permutation, and this
is because a has an inverse a~' and so f, is invertible (that is, if we know that
the output of the function is y and we want to find x such that a-x =y, we simply
have to multiply y by a=*). For example, if we consider Fy = {0,1,2,3,4,5,6}
and a = 3, we get the mapping x — 3x given in Table 1.
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Table 1: Example of a mapping x — ax

Since we get the same set of elements, their sum must also be the same, i.e.
for any a # 0, we have

Zx:Zax.
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Therefore

Ozzgc—Zaa::Za:(l—a):(l—a)Zx.
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If F # Fy, we can always select an element a such that a # 0 and a # 1.
Then (1 —a) # 0, and since finite fields have no zero divisors, the equality

(1—a)) ,cpx =0 implies ) px =0.

Exercise 2. Suppose we have a? + ab + b* = 0. Assume that b # 0; this will
lead us to a contradiction which will prove that b = 0 and hence also a = 0. If
b# 0, we can divide both sides of the equation by b to get

(%)2+%+1:0.

If we denote ¢ = a/b, this becomes



A+c+1=0.

It is easy to see that the polynomial f(x) = 22 + x + 1 is irreducible over Fo
since f(0) = f(1) = 1 and hence it has no roots. Since deg(f) = 2, its roots lie
in the extension field Fya. Thus, if f(c) =c* +c+1=0, i.e. if ¢ is a root of
f, then ¢ must be in Fyz (but not in Fo). However, this is impossible, since n is
odd and Fyz is a subfield of Fon if and only if 2 divides n, i.e. if n is even. We
thus get a contradiction with our assumption that b # 0. From a?> +ab+b%> =0
and b= 0, we then get a®> = 0 which implies a = 0.

Exercise 3. 1. The structure of ¥y is simply Fz = {0,...,6}. To check
whether some a € F7 is a primitive element, i.e. to check whether a
generates the multiplicative group F%, we simply keep computing powers a,
a?, a3, ... of a until we loop, and we check to see whether these powers
encompass all elements of F7. Clearly, 1 cannot generate anything other

than itself. For the remaining elements, we get:

e 20=1-21=2-522=4-2=1;
¢3'=1-3"=3-3=2-3=6-3"=4-3=5-3=1;
0 40=14'=4 5 42=2 5 43=1;
e530=1-5"=5352=4-5=6-35"=2-5"=335=1;
e 6°=1—-6'=6—>62=1.

Thus, 3 and 5 are the primitive elements of Fr.

2. In the same way as for F7, we find that the primitive elements of F17 are

3,5,6,7,10,11,12, 14.

3. Since Fg = F32 is not a prime field, its structure is more complicated and
we need an irreducible polynomial to represent its elements. Let us take
say p(x) = 22 +x+2, which is easily seen to be irreducible in F3[z] since it
has no roots. Taking o to be a root of p(x), i.e. p(a) = a?+a+2 =0, we
want to check whether a is a primitive element of Fyg. To do this, we keep
multiplying o with itself until we loop; in the multiplication process, we
reduce powers o of o with k > 1 using the identity o® = —a—2 = 2a+1.
We obtain the following Table 2.
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a?=2a+1
202 +a=22a+1)+a=2a+2

202 4+ 2a = 2(2a+ 1) + 2a = 2

2a

2Q2a4+1)=a+2
a®+2a0=2a+1+2a=a+1
a?t+a=2a+1+a=1
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Table 2: Generating all elements of F3 as powers of o



Since we obtain 8 distinct elements, we have obtained all non-zero elements
of Fg and have thus generated F§; hence, « is a primitive element.

Since, as we have seen above, all non-zero elements of Fg can be repre-
sented as powers of a, it remains to check whether these remaining pow-
ers are primitive elements themselves. We can simplify our work a bit by
applying Theorem 2.18 and Corollary 2.19 (as indexed in Lidl & Nieder-
reiter). Since Fg = Fs2, we have that a € F§ is primitive if and only if
a3 is primitive. Thus, we immediately have that o2 is primitive (applying
this again would tell us that o is primitive, but since o8 = 1, this is
simply o = «). If we consider all powers of o2, we have (a?)? = a?,
(a?)? = a®, and (a®)* = o® = 1, so that we loop before generating all
elements. Thus. o (and also o® by Theorem 2.18) is not primitive. Sim-
ilarly, since (a*)? = o® =1, a* is not primitive. Finally, for o®, we have
(a5)2 = 042} (a5)3 = 047} (a5)4 = a47 (a5)5 =, (a5)6 = a6: (a5)2 = ag}
(a%)8 = 1. Thus, o is primitive, and so is (a%)3 = .

Exercise 4. This can be shown in the same way as in the proof of Theorem 2.8
in Lidl & Niederreiter. Suppose that M is a finite sub-group of the multiplicative
group F* of some field F, and let h = pI* ...plm be its prime factorization. For
every i in the range 1 < i < m, observe that the polynomial z"/? — 1 has at
most h/p; < h roots, and so we can pick some a; € M which is not a root of that
polynomial, i.e. such that a?/pi # 1. If we take b; = a?/pil, then bfil =al =1,
and thus the order of b; is a divisor of p;*. Since p; is prime, this divisor can

r;—1
only be of the form pi* for some s; < r;. On the other hand, bf"l = a?/pi #1
by the choice of a;, so that the order of b; must be precisely p;*.

Having defined such b; for all i in 1 <1i < m, we now take b = biby...by,
and claim that b generates M. If it does not, then its order must be a divisor
of h strictly less than h itself. Thus, the order of b must be a divisor of h/p;
for some i, say of h/p,. This means that b"/P = b?/pl L MPm = 1. For all

other i, i.e. for i # 1, we have that p;* divides h/p1, and so b?/pi = 1. Thus
b?/pl = 1. But we know that the order of by is pi*, and this cannot be a divisor
of b}f/pl since h/py contains one power of p1 less in its factorization. We have
thus obtained a contradiction to the assumption that the order of b is strictly

less than h, and so b must indeed be a generator of M.

Exercise 5. Suppose F* is cyclic and generated by o. Let 3 = o~ be the
inverse of this generator. Since F* is cyclic, there exists some positive integer
k such that o = B. Then oft! = a-a~! =1, so oFtl, oF*2, ... simply
repeats the sequence o, o, .... Therefore, all elements of F* can be expressed
as powers o with i < k, and since k is a concrete and fized number, there can
only be finitely many elements in F*.

Exercise 6. We know that Fym is a subfield of Fpn if and only if m divides
n, and that all subfields of Fpn are of this form. Therefore, the subfields of
Fsa2 are precisely all finite fields of the form Fsm with m dividing 42; thus, we
just have to find all the divisors of 42. Since 42 = 2 -3 -7, we can easily see
that K = {1,2,3,6,7,14,21,42} are precisely all divisors of 42, and so Fgr with
k € K are precisely all subfields of F22.



