INF 240 - Exercise problems - 7

Nikolay Kaleyski

Some of the following exercises are taken from Lidl \& Niederreiter's Finite fields.

Exercise 1. Let \mathbb{F} be a finite field with more than 2 elements. Show that the sum of all elements of \mathbb{F} is equal to 0 .

Hint: How does the sum of all elements in \mathbb{F} change if we multiply it by a non-zero element?

Exercise 2. Let a and b be elements of the finite field $\mathbb{F}_{2^{n}}$ for n odd. Show that $a^{2}+a b+b^{2}=0$ implies $a=b=0$.

Hint: The polynomial $x^{2}+x+1$ is irreducible over \mathbb{F}_{2}, but it splits into linear factrors in $\mathbb{F}_{2^{2}}$.
Exercise 3. Determine all primitive elements of the following finite fields:

1. $\mathbb{F}_{7} ;$
2. \mathbb{F}_{17};
3. \mathbb{F}_{9}.

Exercise 4. Let \mathbb{F} be a field. Show that every finite subgroup of the multiplicative group \mathbb{F}^{*} is cyclic.

Exercise 5. Let \mathbb{F} be a field. Show that if the multiplicative group \mathbb{F}^{*} is cyclic, then \mathbb{F} is finite.

Hint: Consider the multiplicative inverses of the elements in \mathbb{F}^{*}.
Exercise 6. Find all subfields of $\mathbb{F}_{5^{42}}$.

