INF 240 - Exercise problems - 7

Nikolay Kaleyski

Some of the following exercises are taken from Lidl & Niederreiter's *Finite fields*.

Exercise 1. Let \mathbb{F} be a finite field with more than 2 elements. Show that the sum of all elements of \mathbb{F} is equal to 0.

Hint: How does the sum of all elements in \mathbb{F} change if we multiply it by a non-zero element?

Exercise 2. Let a and b be elements of the finite field \mathbb{F}_{2^n} for n odd. Show that $a^2 + ab + b^2 = 0$ implies a = b = 0.

Hint: The polynomial $x^2 + x + 1$ is irreducible over \mathbb{F}_2 , but it splits into linear factors in \mathbb{F}_{2^2} .

Exercise 3. Determine all primitive elements of the following finite fields:

- 1. \mathbb{F}_7 ;
- 2. \mathbb{F}_{17} ;
- 3. F₉.

Exercise 4. Let \mathbb{F} be a field. Show that every finite subgroup of the multiplicative group \mathbb{F}^* is cyclic.

Exercise 5. Let \mathbb{F} be a field. Show that if the multiplicative group \mathbb{F}^* is cyclic, then \mathbb{F} is finite.

Hint: Consider the multiplicative inverses of the elements in \mathbb{F}^* *.*

Exercise 6. Find all subfields of $\mathbb{F}_{5^{42}}$.