INF 240 - Exercise problems - 5

Nikolay Kaleyski

1 Finding irreducible polynomials

Recall that a polynomial $f(x)$ is called irreducible if it cannot be written as a product $f(x)=g(x) h(x)$ of two polynomials $g(x)$ and $h(x)$ with both $\operatorname{deg}(g)<$ $\operatorname{deg}(f)$ and $\operatorname{deg}(h)<\operatorname{deg}(f)$. For example, the polynomial $\left(x^{2}-1\right)$ over \mathbb{R} is not irreducible, since it can be decomposed as $\left(x^{2}-1\right)=(x+1)(x-1)$. On the other hand, the polynomial $\left(x^{2}+1\right)$ over \mathbb{R} is indeed irreducible; note that we can write, e.g. $\left(x^{2}+1\right)=g(x) h(x)$ for $g(x)=\frac{1}{2} x^{2}+\frac{1}{2}$ and $h(x)=2$, but in this case $\operatorname{deg}(g)=\operatorname{deg}(f)$ (and, by definition, we must be able to find $g(x)$ and $h(x)$ which both have degrees less than that of $f(x)$ in order for $f(x)$ to be reducible).

Irreducible polynomials are very useful for a number of reason, one of which is that they can be used to construct finite fields. Recall that the quotient ring $F[x] /(f(x))$ is a field if and only if $f(x)$ is irreducible. Thus, being able to find irreducible polynomials is an important problem of practical significance.

In general, it is easy to show that a polynomial $f(x)$ is reducible, since all that is required is to find a concrete decomposition of $f(x)$ into $f(x)=g(x) h(x)$. On the other hand, showing that a polynomial is not irreducible is hard; with the exception of some special cases, the only approach that can be used to verify that a given $f(x)$ is irreducible, is to go over all polynomials of degree lower than that of $f(x)$ and to check that they do not divide $f(x)$. In the same vein, one can find all irreducible polynomials of a certain degree n by first writing down all polynomials of degree n, then computing the products of each pair of polynomials $g(x)$ and $h(x)$ with $\operatorname{deg}(g)+\operatorname{deg}(h)=n$ and removing them from the list.

In the following exercise, we will find all irreducible polynomials of degree 2 in $\mathbb{F}_{3}[x]$ using this method. Note that multiplying a polynomial by a constant does not change whether it is reducible or not, so we can assume that all polynomials are monic without losing any information.

Exercise 1. Consider the finite field \mathbb{F}_{3} and the univariate polynomial ring $\mathbb{F}_{3}[x]$ over it.

1. Write down all monic polynomials of degree 2 in $\mathbb{F}_{3}[x]$; there should be nine of these.
2. Write down all monic polynomials of degree 1 in $\mathbb{F}_{3}[x]$; there should be only three of these. If some polynomial from the "degree 2 " list is reducible, it must be the product of two polynomials from the "degree 1" list.
3. Consider every pair of polynomials from the "degree 1" list (there should be 9 of these) and compute their product; remove this product from the list
of "degree 2" polynomials.
4. The remaining degree 2 polynomials should be precisely all irreducible polynomials of degree 2 in $\mathbb{F}_{3}[x]$.

NB: In the above example, we only considered products of polynomials of degree 1 because we were looking for irreducible polynomials of degree 2, and the only possible decomposition is $2=1+1$. If we were looking for irreducible polynomials of degree 4 instead, we would have to consider the decompositions $4=3+1$ and $4=2+2$, so we would consider all products of a polynomial of degree 3 with a polynomial of degree 1 , and all products of two polynomials of degree 2.

A special case in which irreducibility can be shown without resorting to this "brute force" approach is when the degree of $f(x)$ is 2 or 3 . Recall that some $a \in \mathbb{F}$ is a root of a polynomial $f(x)$ in $\mathbb{F}[x]$ if and only if $(x-a)$ divides $f(x)$. Since degree 2 can only decompose as $2=1+1$ and 3 can only decompose as $3=2+1$ (or $3=1+2$, which is the same), if $f(x)$ is reducible and $\operatorname{deg}(f) \leq 3$, then $f(x)$ must have a polynomial of degree 1 as a divisor; and, consequently, $f(x)$ must have a root. Therefore, to check whether a given polynomial $f(x)$ with $\operatorname{deg}(f) \leq 3$ is irreducible, it is enough to check that it has no roots, i.e. to go through every element $a \in \mathbb{F}$ and show that $f(a) \neq 0$.

Exercise 2. By finding all roots of the following polynomials, decide which of them are reducible and which are irreducible in $\mathbb{F}_{3}[x]$:

- $f_{1}(x)=x^{3}+2 x^{2}+2 x+2$;
- $f_{2}(x)=x^{3}+x^{2}+2 x+2$;
- $f_{3}(x)=x^{3}+x+2$;
- $f_{4}(x)=x^{3}+2 x+1$.

NB: When $\operatorname{deg}(f) \geq 4$, this "root method" only provides a necessary (and not a sufficient) condition for a polynomial to be irreducible. For example, a polynomial of degree 4 might have no divisors of degree 1 (and hence no roots), but may decompose as $4=2+2$.

2 Construction of finite fields

As mentioned in the previous section, one particularly useful application of irreducible polynomials is the construction of extensions of finite fields. Starting with a finite field \mathbb{F}, one finds an irreducible polynomial $f(x)$ in $\mathbb{F}[x]$, and constructs the quotient ring $\mathbb{F}[x] /(f(x))$; we know that since $f(x)$ is irreducible, the resulting structure will not only be a ring, but a finite field itself. Intuitively, the elements of the newly constructed finite field correspond to the possible remainders of division by $f(x)$; in particular, they can be identified with all polynomials in $\mathbb{F}[x]$ of degree strictly less than $\operatorname{deg}(f)$. Since the elements of \mathbb{F} can be interpreted as constant polynomials, and since dividing any constant polynomial $c(x)$ by $f(x)$ always leaves $c(x)$ as remainder, the elements of \mathbb{F} are contained in $\mathbb{F}[x] /(f(x))$, so that \mathbb{F} is a subfield of $\mathbb{F}[x] /(f(x))$ or, equivalently, $\mathbb{F}[x] /(f(x))$ is an extension field of \mathbb{F}.

Exercise 3. Consider the polynomial ring $\mathbb{F}_{3}[x]$, and the irreducible polynomials of degree 2 from Exercise 1. Take $f(x)$ to be one of these irreducible polynomials (say, the one with the smallest number of terms, although any choice of a polynomial will work as long as it is irreducible). Construct the quotient ring $\mathbb{F}_{3}[x] /(f(x))$, i.e. list all of its elements, and explain how addition and multiplication are performed in it. Is there a correlation between the degree of $f(x)$ and the number of elements of $\mathbb{F}_{3}[x] /(f(x))$?

Exercise 4. Consider the elements $[x+2]$ and $[2 x+1]$ of $\mathbb{F}[x] /(f(x))$. Compute their sum and their product in $\mathbb{F}[x] /(f(x))$. Find their additive and multiplicative inverses in $\mathbb{F}[x] /(f(x))$.

Exercise 5. Consider the polynomials $x^{5}+2 x^{3}+1$ and $x^{4}+x^{2}+x+1$. Which elements of $\mathbb{F}[x] /(f(x))$ do they correspond to?

