INF 240 - Exercise problems - 4
 Solutions

Nikolay Kaleyski

Exercise 1.

- To find $\operatorname{gcd}(115,69)$: divide 115 by 69 with remainder, i.e. find a quotient q and a remainder $r<69$ such that $115=69 q+r$. This is clearly

$$
115=69 \cdot 1+46
$$

Since the remainder $r=46$ is not zero, we repeat the above step with 69 and 46 in place of 115 and 69:

$$
69=46 \cdot 1+23
$$

The remainder $r=23$ is still not zero, so we divide again:

$$
46=23 \cdot 2+0
$$

This time, the remainder is zero, so we terminate; the last non-zero remainder is the greatest common divisor of the two input integers, i.e. $\operatorname{gcd}(115,69)=23$.

- To find α and β such that $115 \alpha+69 \beta=\operatorname{gcd}(115,69)=23$: beginning with the last equation with a non-zero remainder (which is equal to $\operatorname{gcd}(115,69))$, as a combination of the other two integers involved in the equation:

$$
23=69-46
$$

From the very first equation, we can express 46 as a combination of 115 and 69 as $46=115-69$. We now substitute this into the above equation and simplify in order to obtain

$$
23=69-(115-69)=-115+2 \cdot 69
$$

Thus $\alpha=-1$ and $\beta=2$ satisfy $115 \alpha+69 \beta=23$.

- To find $\operatorname{gcd}(115,48)$: divide 115 by 48 to get

$$
115=48 \cdot 2+19
$$

Repeat:

$$
48=19 \cdot 2+10
$$

Repeat:

$$
19=10 \cdot 1+9
$$

Repeat:

$$
10=9 \cdot 1+1
$$

Repeat:

$$
9=1 \cdot 9+0 .
$$

Having obtained a zero remainder, we terminate, and see that $\operatorname{gcd}(115,48)=$ 1 since 1 is the last non-zero remainder that we obtained.

- To find α and β satisfying $115 \alpha+48 \beta=1$: we first write

$$
1=10-9
$$

from the last equation with a non-zero remainder. We thus have an expression of 1 as a combination of 9 and 10. But from the next-to-last equation with a non-zero remainder, we can express 9 as $9=19-10$ and substitute this into the above equation to obtain

$$
1=10-(19-10)=2 \cdot 10-19
$$

We go one equation up, and see that we can express 10 as $10=48-2 \cdot 19$. We substitute this above to get

$$
1=2(48-2 \cdot 19)-19=2 \cdot 48-5 \cdot 19
$$

Finally, from the very first equation, we have $19=115-2 \cdot 48$ so that the above becomes

$$
1=2 \cdot 48-5(115-2 \cdot 48)=-5 \cdot 115+12 \cdot 48
$$

Exercise 2. To find the least common multiples, we use the results from the previous exercise and the formula

$$
\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a b
$$

So we have

$$
\operatorname{lcm}(115,69)=\frac{115 \cdot 69}{\operatorname{gcd}(115,69)}=\frac{115 \cdot 69}{23}=345
$$

and

$$
\operatorname{lcm}(115,48)=\frac{115 \cdot 48}{\operatorname{gcd}(115,48)}=\frac{115 \cdot 48}{1}=115 \cdot 48=5520
$$

Exercise 3. To find the greatest common divisor of $f(x)=x^{5}+2 x^{4}-x^{2}+1$ and $g(x)=x^{4}-1$, we apply the same procedure as in the case of integers: we divide $f(x)$ by $g(x)$ with remainder, i.e. we find a quotient $q(x)$ and a remainder $r(x)$ such that $f(x)=g(x) q(x)+r(x)$. In the first step, we obtain

$$
f(x)=g(x)(x+2)+\left(-x^{2}+x+3\right)
$$

Since the remainder $r(x)=\left(-x^{2}+x+3\right)$ is non-zero, we divide $g(x)$ by $r(x)$ in the next step:

$$
g(x)=\left(-x^{2}+x+3\right)\left(-x^{2}-x-4\right)+(7 x+11)
$$

Once again, the remainder is non-zero, so we divide $\left(-x^{2}+x+3\right)$ by $(7 x+11)$:

$$
\left(-x^{2}+x+3\right)=(7 x+11)\left(-\frac{1}{7} x+\frac{18}{49}\right)-\frac{51}{49}
$$

Although the remainder here is not zero, it is a constant, and it is clear that in the next step we will be dividing a polynomial by a constant, which can always be done with zero remainder. Hence this is the last step in the computation, and the greatest common divisor of $f(x)$ and $g(x)$ is the last non-zero remainder, which in this case is the constant polynomial $-\frac{51}{49}$. We have to remember to "normalize" the polynomial so that it is monic, and we do this by dividing it by the coefficient in front of its highest power of x (the so-called leading coefficient). In this case, the leading coefficient is $-\frac{51}{49}$, and dividing by it yields 1 ; thus $\operatorname{gcd}(f(x), g(x))=1$, i.e. $f(x)$ and $g(x)$ are co-prime.

Exercise 4. To find the least common multiple of $f(x)$ and $g(x)$ from the previous exercise, we once again make use of the formula

$$
\operatorname{gcd}(f(x), g(x)) \cdot \operatorname{lcm}(f(x), g(x))=f(x) \cdot g(x)
$$

which holds for any two polynomials $f(x)$ and $g(x)$. In our case, we get

$$
\begin{aligned}
& \operatorname{lcm}(f(x), g(x))=\frac{f(x) \cdot g(x)}{\operatorname{gcd}(f(x), g(x))}= \\
& \quad \frac{\left(x^{5}+2 x^{4}-x^{2}+1\right)\left(x^{4}-1\right)}{1}=x^{9}+2 x^{8}-x^{6}-x^{5}-x^{4}+x^{2}-1
\end{aligned}
$$

Exercise 5. To find the greatest common divisor of $f(x)=x^{7}+1$ and $g(x)=$ $x^{5}+x^{3}+x+1$, we once again apply the Euclidean algorithm. In this case, we remark that the only possible coefficients in \mathbb{F}_{2} are 0 and 1 , and that addition and subtraction are the same operation (since $-1 \equiv 1 \bmod 2)$ which greatly simplifies computation. In the first step, we have

$$
x^{7}+1=\left(x^{2}+x\right)\left(x^{5}+x^{3}+x+1\right)+\left(x^{2}+x\right)
$$

The remainder, $x^{2}+x$, is non-zero, and so we divide again:

$$
x^{5}+x^{3}+x+1=\left(x^{3}\right)\left(x^{2}+1\right)+(x+1) .
$$

And again:

$$
x^{2}+1=(x+1)(x+1)+0
$$

This time, the remainder is zero, and $\operatorname{gcd}(f(x), g(x))=(x+1)$ since the latter is the last non-zero remainder in the algorithm.

Exercise 6. As before, we use that $\operatorname{gcd}(f(x), g(x)) \cdot \operatorname{lcm}(f(x), g(x))=f(x) \cdot g(x)$, so we get

$$
\begin{aligned}
& \operatorname{lcm}(f(x), g(x))=\frac{f(x) \cdot g(x)}{\operatorname{gcd}(f(x), g(x)}=\frac{\left(x^{7}+1\right)\left(x^{5}+x^{3}+x+1\right)}{x+1}= \\
& \quad \frac{x^{12}+x^{10}+x^{8}+x^{7}+x^{5}+x^{3}+x+1}{x+1}=x^{11}+x^{10}+x^{7}+x^{4}+x^{3}+1
\end{aligned}
$$

