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1 The Euclidean algorithm for integers

Let us briefly recall the basic notions of divisibility for integers. If a = bk for
some a, b, k ∈ Z, we say that a is a multiple of b, or that b divides a, or that b is
a divisor of a; we write this as b | a. This is the same as saying a mod b = 0.

A common divisor of two integers a, b is a number which is a divisor of a
as well as a divisor of b. For example, 5 divides both 20 and 30, so it is a
common divisor. The greatest common divisor (GCD) is, intuitively, the largest
(greatest) number which has this property: for example, 10 also divides both
20 and 30, so although 5 is a common divisor, it is definitely not their greatest
common divisor.

A related concept is that of the least common multiple (LCM). Again, a
common multiple of a and b is a number that is a multiple of a as well as a
multiple of b; the LCM is the smallest among all numbers having this property.

The GCD and LCM are linked by the formula

gcd(a, b)lcm(a, b) = ab. (1)

Thus, provided one has a way of obtaining one of the LCM or GCD of a pair
of given numbers, the other one can be obtained from (1).

Recall the Euclidean algorithm for finding the GCD of two positive integers
a, b ∈ N. Initially, we set r0 = a, r1 = b (assuming a > b). In each step, we
divide ri−2 by ri−1 with remainder ri, i.e. we write ri−2 = ri−1q+ri. We repeat
the same procedure again and again, until we obtain a zero remainder. The last
non-zero remainder obtained using this procedure is the GCD of a and b.

Exercise 1. Use the Euclidean algorithm to find gcd(115, 69) and gcd(115, 48).

Exercise 2. Find lcm(115, 60) and lcm(115, 48).

2 The Euclidean algorithm for polynomials

The divisibility properties, least common multiple (LCM), greatest common
divisor (GCD), etc. of two polynomials f(x), g(x) are defined and computed
according to the same logic as in the case of integers.

The (extended) Euclidean algorithm for polynomials is performed analogi-
cally to the algorithm for integers, simply by replacing the notions of divisibility
for integers with their analogues for polynomials.

Exercise 3. Find the greatest common divisors of f(x) = x5 +2x4−x2 +1 and
g(x) = x4 − 1 over Q.
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Exercise 4. Find the least common multiple of f(x) and g(x) from the previous
exercise.

Performing calculations of this type over finite structures (e.g. F7 as opposed
to Q) is typically easier since all coefficients are integers and no fractions are
involved. The principles remain the same.

Exercise 5. Let f(x) = x7 + 1 and g(x) = x5 + x3 + x + 1 over F2. Compute
the greatest common divisor gcd(f(x), g(x)) of the two polynomials.

Exercise 6. Compute lcm(f(x), g(x)) for f(x) and g(x) from the previous ex-
ercise.

3 Computing with polynomials in Magma

3.1 Creating the base structure

The Magma programming language makes it very easy to work with polynomials
defined over an arbitrary field or ring. Operators and functions allowing one to
add, multiply and divide polynomials, as well as to calculate the GCD or LCM
of a pair of polynomials are readily available.

The first step is to create a representation for the base structure over which
the polynomials are defined. The infinite sets Z, Q, R, C of integer, rational,
real, and complex numbers, respectively, can be obtained by invoking built-in
functions in Magma:

base := IntegerRing ( ) ;
// or
base := Rat i ona lF i e ld ( ) ;
// or
base := Rea lF ie ld ( ) ;
// or
base := ComplexField ( ) ;

To create a representation of Fn, e.g. for n = 16, we would call

base := F i n i t e F i e l d ( 1 6 ) ;

3.2 Creating the polynomial ring

Once the base structure B is created and stored in a variable, we can define the
ring B[x] of polynomials in indeterminate x over B. The name of the indeter-
minate does not have to be x; it can be e.g. y, z, A, ind, or any other valid
keyword, but we have to specify it during the creating of the polynomial ring.

P<z> := PolynomialRing ( base ) ;

The above will create a polynomial ring over the structure stored in base
with indeterminate z. The polynomial ring is stored in the variable P.
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3.3 Defining polynomials

Once the polynomial ring is created, one can define polynomials using the in-
determinate that was specified during its creation:

f 1 := z ˆ5 + z ˆ2 + z ;
f 2 := z ˆ8 − 3 ∗ z + 1 ;

The coefficients, of course, must belong to the base structure; if the base
structure is one of the infinite sets of numbers or Fp for some prime number p,
then we can assume that all possible coefficients are numbers and can be entered
exactly as above.

3.4 Working with polynomials

Once one (or several) polynomials are defined, a lot of standard operations can
easily be performed with Magma. For instance, invoking

GCD( f 1 , f 2 ) ;

or

LCM( f 1 , f 2 ) ;

will compute and return the LCM, resp. GCD of two given polynomials.
Addition, subtraction and multiplication of polynomials is performed exactly as
one would expect, e.g.

( f 1 + f 2 )∗ f 1 ;

Division is somewhat more complicated due to the fact that when dividing
a(x) by b(x), there are two outputs, viz. the quotient q(x) and the remainder
r(x): a(x) = b(x)q(x) + r(x). The quotient, resp. remainder, is obtained using
the div, resp. mod command:

quot i ent := f 1 div f 2 ;
remainder := f 1 mod f 2 ;
a s s e r t f 1 eq quot i ent ∗ f 2 + remainder ;

Exercise 7. Define polynomial rings over Q and over F2, and find the GCD’s
and LCM’s of the polynomials from the previous exercises and verify your an-
swers.
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