INF 240 - Exercise problems - 3
 Solutions

Nikolay Kaleyski

Exercise 1. Since 7 is a prime, the finite field \mathbb{F}_{7} is the same thing as \mathbb{Z}_{7}; the Cayley tables therefore merely express addition and multiplication modulo 7. The table for addition has the form

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	6	0	1	2	3	4	5
2	5	6	0	1	2	3	4
3	4	5	6	0	1	2	3
4	3	4	5	6	0	1	2
5	2	3	4	5	6	0	1
6	1	2	3	4	5	6	0

Table 1: Addition table for \mathbb{F}_{7}
and the one for multiplication takes the form

\cdot	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	2	4
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Table 2: Multiplication table for \mathbb{F}_{7}
The inverse table can be extracted from the addition and multiplication tables above (by e.g. finding the row that contains the neutral element for a given column), or can be computed manually. Note that 0 does not have a multiplicative inverse, and this is true for any field. The result is:

Exercise 2. 1. Writing the coefficients from the least to the most significant, $p_{1}(x)=x^{5}+3 x^{4}+6 x^{2}+2 x+1$ gives the vector

$$
(1,2,6,0,3,1)
$$

while $p_{2}(x)=6 x^{4}+3 x^{3}+x^{2}+x+5$ gives the vector
$(5,1,1,3,6)$.

x	$-x$	x^{-1}
0	0	-
1	6	1
2	5	4
3	4	5
4	3	2
5	2	3
6	1	6

Table 3: Inverse table for \mathbb{F}_{7}

Should we need to have both vectors of the same length, we can always expand the vector corresponding to $p_{2}(x)$ by adding extra terms with zero coefficients; in other words, we can imagine that $p_{2}(x)$ has the form $p_{2}(x)=0 x^{5}+6 x^{4}+$ $3 x^{3}+x^{2}+x+5$ and write its vector as

$$
(5,1,1,3,6,0)
$$

2. The degree of a polynomial is its largest exponent with a non-zero coefficient. So, in our case, $\operatorname{deg}\left(p_{1}(x)\right)=5$ and $\operatorname{deg}\left(p_{2}(x)\right)=4$.
3. A monic polynomial is one whose largest exponent has coefficient 1. In this case $p_{1}(x)$ is monic but $p_{2}(x)$ is not.
4.

$$
p_{1}(x)+p_{2}(x)=x^{5}+(6+3) x^{4}+(6+1) x^{2}+(2+1) x+5+1=x^{5}+2 x^{4}+3 x+6 .
$$

$$
\begin{aligned}
& \left(x^{5}+3 x^{4}+6 x^{2}+2 x+1\right)\left(6 x^{4}+3 x^{3}+x^{2}+x+5\right)= \\
& 6 x^{9}+3 x^{8}+x^{7}+x^{6}+5 x^{5}+4 x^{8}+2 x^{7}+3 x^{6}+3 x^{5}+x^{4}+x^{6}+4 x^{5}+6 x^{4}+6 x^{3}+2 x^{2}+ \\
& 5 x^{5}+6 x^{4}+2 x^{3}+2 x^{2}+3 x+6 x^{4}+3 x^{3}+x^{2}+x+5= \\
& 6 x^{9}+(3+4) x^{8}+(1+2) x^{7}+(1+3+1) x^{6}+(5+3+4+5) x^{5}+ \\
& (1+6+6+6) x^{4}+6+(2+3) x^{3}+(2+2+1) x^{2}+(3+1) x+5= \\
& 6 x^{9}+3 x^{7}+5 x^{6}+3 x^{5}+5 x^{4}+4 x^{3}+3 x^{2}+5 x+5 .
\end{aligned}
$$

To get the additive inverse of a polynomial, we simply replace every coefficient with its additive inverse:

$$
\begin{aligned}
& -p_{1}(x)=6 x^{5}+4 x^{4}+x^{2}+5 x+6 \\
& -p_{2}(x)=x^{4}+4 x^{3}+6 x^{2}+6 x+2
\end{aligned}
$$

Dividing with remainder, we get

$$
p_{1}(x)=p_{2}(x)(6 x+1)+\left(5 x^{3}+6 x^{2}+6 x+3\right)
$$

Exercise 3. Let

$$
M=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)
$$

be an arbitrary 3-by-3 matrix. Consider e.g. the product

$$
M I=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
A & B & C \\
D & E & F \\
G & H & I
\end{array}\right)
$$

Suppose we want to compute the value of F. By the definition of matrix multiplication, since F is on the second row and third column, we take the second row of M, viz. (def), and the third column of I, viz. (001), and compute $F=d \cdot 0+e \cdot 0+1 \cdot f=f$. In the same way, we can verify that $A=a, B=b$, etc., and hence $M I=M$. In the same way, one can verify that $I M=M$ as well.
2. We have e.g.

$$
A+B=\left(\begin{array}{lll}
1 & 0 & 1 \\
2 & 0 & 1 \\
2 & 1 & 0
\end{array}\right)+\left(\begin{array}{lll}
0 & 2 & 2 \\
1 & 0 & 2 \\
2 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 0 & 3 \\
4 & 2 & 0
\end{array}\right)
$$

3. We have e.g.

$$
A B=\left(\begin{array}{lll}
1 & 0 & 1 \\
2 & 0 & 1 \\
2 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 2 & 2 \\
1 & 0 & 2 \\
2 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
A & B & C \\
D & E & F \\
G & H & I
\end{array}\right)
$$

To compute e.g. A (which is on the first row and first column), we take the first row of A, and combine it with the first column of B :

$$
A=1 \cdot 0+0 \cdot 1+1 \cdot 2=2
$$

Similarly, we have

$$
\begin{aligned}
B & =1 \cdot 2+0 \cdot 0+1 \cdot 1=3 \\
C & =1 \cdot 2+0 \cdot 2+1 \cdot 0=2 \\
D & =2 \cdot 0+0 \cdot 1+1 \cdot 2=2 \\
E & =2 \cdot 2+0 \cdot 0+1 \cdot 1=5 \\
F & =2 \cdot 2+0 \cdot 2+1 \cdot 0=4 \\
G & =2 \cdot 0+1 \cdot 1+0 \cdot 0=1 \\
H & =2 \cdot 2+1 \cdot 0+0 \cdot 1=4 \\
I & =2 \cdot 2+1 \cdot 2+0 \cdot 0=6
\end{aligned}
$$

so that

$$
A B=\left(\begin{array}{ccc}
2 & 3 & 2 \\
2 & 5 & 4 \\
1 & 4 & 6
\end{array}\right)
$$

4. The additive inverse of a matrix is obtained by simply replacing all of its elements with their additive inverses; for instance, we get

$$
-A=\left(\begin{array}{ccc}
-1 & 0 & -1 \\
-2 & 0 & -1 \\
-2 & -1 & 0
\end{array}\right)
$$

Exercise 4. The computations here are exactly the same as in the previous exercise, except one has to modulate numbers larger than 5 or smaller than 0. In this case, we have e.g.

$$
A+B=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 0 & 3 \\
4 & 2 & 0
\end{array}\right)
$$

and

$$
A B=\left(\begin{array}{lll}
2 & 3 & 2 \\
2 & 0 & 4 \\
1 & 4 & 1
\end{array}\right)
$$

Exercise 5. We prove the statement by induction on k, the number of the terms in the expression. From Theorem 1.46, we already know that the statement is true for $k=2$. Let us assume that we know the statement is true is for all k from 1 up to some l and we want to prove that it is true for $l+1$. We can write

$$
\left(a_{1}+a_{2}+a_{3}+\cdots+a_{l}+a_{l+1}\right)^{p^{n}}=(\underbrace{\left(a_{1}+a_{2}+\cdots+a_{l}\right)}_{A}+\underbrace{a_{l+1}}_{B})^{p^{n}} .
$$

Since we know that the statement is true for $k=2$ terms, we can apply it to $(A+B)^{p^{n}}$ above to get

$$
(A+B)^{p^{n}}=A^{p^{n}}+B^{p^{n}}=\left(a_{1}+a_{2}+\cdots+a_{l}\right)^{p^{n}}+a_{l+1}^{p^{n}} .
$$

But since the statement is true for l, we know that

$$
\left(a_{1}+a_{2}+\cdots+a_{l}\right)^{p^{n}}=a_{1}^{p^{n}}+a_{2}^{p^{n}}+\cdots+a_{l}^{p^{n}}
$$

and hence

$$
\left(a_{1}+a_{2}+a_{3}+\cdots+a_{l}+a_{l+1}\right)^{p^{n}}=a_{1}^{p^{n}}+a_{2}^{p^{n}}+\cdots+a_{l}^{p^{n}}+a_{l+1}^{p^{n}}
$$

which justifies the induction step and completes the proof.

