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Exercise 1. Since 7 is a prime, the finite field F7 is the same thing as Z7;
the Cayley tables therefore merely express addition and multiplication modulo 7.
The table for addition has the form

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6
1 6 0 1 2 3 4 5
2 5 6 0 1 2 3 4
3 4 5 6 0 1 2 3
4 3 4 5 6 0 1 2
5 2 3 4 5 6 0 1
6 1 2 3 4 5 6 0

Table 1: Addition table for F7

and the one for multiplication takes the form

· 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 2 4
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

Table 2: Multiplication table for F7

The inverse table can be extracted from the addition and multiplication tables
above (by e.g. finding the row that contains the neutral element for a given col-
umn), or can be computed manually. Note that 0 does not have a multiplicative
inverse, and this is true for any field. The result is:

Exercise 2. 1. Writing the coefficients from the least to the most significant,
p1(x) = x5 + 3x4 + 6x2 + 2x+ 1 gives the vector

(1, 2, 6, 0, 3, 1)

while p2(x) = 6x4 + 3x3 + x2 + x+ 5 gives the vector

(5, 1, 1, 3, 6).
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x −x x−1

0 0 -
1 6 1
2 5 4
3 4 5
4 3 2
5 2 3
6 1 6

Table 3: Inverse table for F7

Should we need to have both vectors of the same length, we can always expand
the vector corresponding to p2(x) by adding extra terms with zero coefficients;
in other words, we can imagine that p2(x) has the form p2(x) = 0x5 + 6x4 +
3x3 + x2 + x+ 5 and write its vector as

(5, 1, 1, 3, 6, 0).

2. The degree of a polynomial is its largest exponent with a non-zero coeffi-
cient. So, in our case, deg(p1(x)) = 5 and deg(p2(x)) = 4.

3. A monic polynomial is one whose largest exponent has coefficient 1. In
this case p1(x) is monic but p2(x) is not.

4.

p1(x)+p2(x) = x5+(6+3)x4+(6+1)x2+(2+1)x+5+1 = x5+2x4+3x+6.

(x5 + 3x4 + 6x2 + 2x+ 1)(6x4 + 3x3 + x2 + x+ 5) =

6x9+3x8+x7+x6+5x5+4x8+2x7+3x6+3x5+x4+x6+4x5+6x4+6x3+2x2+

5x5 + 6x4 + 2x3 + 2x2 + 3x+ 6x4 + 3x3 + x2 + x+ 5 =

6x9 + (3 + 4)x8 + (1 + 2)x7 + (1 + 3 + 1)x6 + (5 + 3 + 4 + 5)x5+

(1 + 6 + 6 + 6)x4 + 6 + (2 + 3)x3 + (2 + 2 + 1)x2 + (3 + 1)x+ 5 =

6x9 + 3x7 + 5x6 + 3x5 + 5x4 + 4x3 + 3x2 + 5x+ 5.

To get the additive inverse of a polynomial, we simply replace every coeffi-
cient with its additive inverse:

−p1(x) = 6x5 + 4x4 + x2 + 5x+ 6,

−p2(x) = x4 + 4x3 + 6x2 + 6x+ 2.

Dividing with remainder, we get

p1(x) = p2(x)(6x+ 1) + (5x3 + 6x2 + 6x+ 3).
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Exercise 3. Let

M =

 a b c
d e f
g h i


be an arbitrary 3-by-3 matrix. Consider e.g. the product

MI =

 a b c
d e f
g h i

 1 0 0
0 1 0
0 0 1

 =

 A B C
D E F
G H I

 .

Suppose we want to compute the value of F . By the definition of matrix
multiplication, since F is on the second row and third column, we take the
second row of M , viz. (def), and the third column of I, viz. (001), and compute
F = d · 0 + e · 0 + 1 · f = f . In the same way, we can verify that A = a, B = b,
etc., and hence MI = M . In the same way, one can verify that IM = M as
well.

2. We have e.g.

A+B =

 1 0 1
2 0 1
2 1 0

+

 0 2 2
1 0 2
2 1 0

 =

 1 2 3
3 0 3
4 2 0

 .

3. We have e.g.

AB =

 1 0 1
2 0 1
2 1 0

 0 2 2
1 0 2
2 1 0

 =

 A B C
D E F
G H I

 .

To compute e.g. A (which is on the first row and first column), we take the
first row of A, and combine it with the first column of B:

A = 1 · 0 + 0 · 1 + 1 · 2 = 2

Similarly, we have
B = 1 · 2 + 0 · 0 + 1 · 1 = 3

C = 1 · 2 + 0 · 2 + 1 · 0 = 2

D = 2 · 0 + 0 · 1 + 1 · 2 = 2

E = 2 · 2 + 0 · 0 + 1 · 1 = 5

F = 2 · 2 + 0 · 2 + 1 · 0 = 4

G = 2 · 0 + 1 · 1 + 0 · 0 = 1

H = 2 · 2 + 1 · 0 + 0 · 1 = 4

I = 2 · 2 + 1 · 2 + 0 · 0 = 6

so that

AB =

 2 3 2
2 5 4
1 4 6

 .

4. The additive inverse of a matrix is obtained by simply replacing all of its
elements with their additive inverses; for instance, we get
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−A =

 −1 0 −1
−2 0 −1
−2 −1 0

 .

Exercise 4. The computations here are exactly the same as in the previous
exercise, except one has to modulate numbers larger than 5 or smaller than 0.
In this case, we have e.g.

A+B =

 1 2 3
3 0 3
4 2 0


and

AB =

 2 3 2
2 0 4
1 4 1

 .

Exercise 5. We prove the statement by induction on k, the number of the terms
in the expression. From Theorem 1.46, we already know that the statement is
true for k = 2. Let us assume that we know the statement is true is for all k
from 1 up to some l and we want to prove that it is true for l+1. We can write

(a1 + a2 + a3 + · · ·+ al + al+1)
pn

= ((a1 + a2 + · · ·+ al)︸ ︷︷ ︸
A

+ al+1︸︷︷︸
B

)p
n

.

Since we know that the statement is true for k = 2 terms, we can apply it to
(A+B)p

n

above to get

(A+B)p
n

= Apn

+Bpn

= (a1 + a2 + · · ·+ al)
pn

+ ap
n

l+1.

But since the statement is true for l, we know that

(a1 + a2 + · · ·+ al)
pn

= ap
n

1 + ap
n

2 + · · ·+ ap
n

l

and hence

(a1 + a2 + a3 + · · ·+ al + al+1)
pn

= ap
n

1 + ap
n

2 + · · ·+ ap
n

l + ap
n

l+1

which justifies the induction step and completes the proof.
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