INF 240 - Exercise problems - 3

Nikolay Kaleyski

Exercise 1. Write down Cayley tables for the additive and multiplicative operation in $\left(\mathbb{F}_{7},+, \cdot\right)$. In addition, create tables of additive and multiplicative inverses which lists the inverse of each element of \mathbb{F}_{7}.

+	0	1	2	3	4	5	6
0							
1							
2							
3							
4							
5							
6							

Table 1: Addition table for \mathbb{F}_{7}

\cdot	0	1	2	3	4	5	6
0							
1							
2							
3							
4							
5							
6							

Table 2: Multiplication table for \mathbb{F}_{7}

x	$-x$	x^{-1}
0		
1		
2		
3		
4		
5		
6		
7		

Table 3: Inverse table for \mathbb{F}_{7}

Exercise 2. Consider the ring $\mathbb{F}_{7}[x]$ of polynomials in indeterminate x over the finite field $\left(\mathbb{F}_{7},+, \cdot\right)$.

1. Write down the vectors of coefficients corresponding to

$$
p_{1}(x)=x^{5}+3 x^{4}+6 x^{2}+2 x+1
$$

and

$$
p_{2}(x)=6 x^{4}+3 x^{3}+x^{2}+x+5
$$

2. What are the degrees of $p_{1}(x)$ and $p_{2}(x)$?
3. Is $p_{1}(x)$, resp. $p_{2}(x)$ a monic polynomial?
4. Compute $p_{1}(x)+p_{2}(x), p_{1}(x) \cdot p_{2}(x),-p_{1}(x)$ and $-p_{2}(x)$;
5. Divide $p_{1}(x)$ by $p_{2}(x)$ with remainder, i.e. find $q(x)$ and $r(x)$ satisfying $p_{1}(x)=q(x) p_{2}(x)+r(x)$, with $\operatorname{deg} r(x)<\operatorname{deg} p_{2}(x)$.

Exercise 3. Consider the set of 3×3 matrices over the real numbers. Recall that addition of matrices is performed component-wise, i.e.

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)+\left(\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right)=\left(\begin{array}{lll}
a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+b_{13} \\
a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23} \\
a_{31}+b_{31} & a_{32}+b_{32} & a_{33}+b_{33}
\end{array}\right)
$$

Matrix multiplication is a bit more involved; we have

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \times\left(\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right)=\left(\begin{array}{lll}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{array}\right)
$$

where $c_{i, j}=\sum_{k=1}^{3} a_{i, k} b_{k, j}$. For example, $c_{12}=a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32}$.
Recall also the zero matrix

$$
Z=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and the identity matrix

$$
I=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Consider the matrices

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
2 & 0 & 1 \\
2 & 1 & 0
\end{array}\right) B=\left(\begin{array}{lll}
0 & 2 & 2 \\
1 & 0 & 2 \\
2 & 1 & 0
\end{array}\right) C=\left(\begin{array}{lll}
2 & 0 & 1 \\
1 & 2 & 0 \\
2 & 1 & 1
\end{array}\right)
$$

1. The zero matrix clearly has the property that $Z+M=M+Z$ for any matrix M. Show that the identity matrix has the same property with respect to matrix multiplication, i.e. $I M=M I=M$ for any matrix M.
2. Compute the sums $A+B, A+C, B+C$.
3. Compute the products $A B, B A, A C, C A, B C, C B$.
4. What are the additive inverses of A, B and C ?

Exercise 4. Consider the matrices A, B, and C defined in the previous exercise but over \mathbb{F}_{5} instead of the real numbers. Repeat the same operations as in the previous exercise:
Compute the sums $A+B, A+C, B+C$.
Compute the products $A B, B A, A C, C A, B C, C B$.
What are the additive inverses of A, B and C.
Exercise 5. (Lidl \mathcal{G} Niederreiter 1.15)
Recall from the lecture that if R is a commutative ring of characteristic p, then for any $a, b \in R$ we have $(a+b)^{p^{n}}=a^{p^{n}}+b^{p^{n}}$. Show that

$$
\left(a_{1}+a_{2}+a_{3}+\cdots+a_{k}\right)^{p^{n}}=a_{1}^{p^{n}}+a_{2}^{p^{n}}+a_{3}^{p^{n}}+\cdots+a_{k}^{p^{k}}
$$

for any $a_{1}, a_{2}, a_{3}, \ldots, a_{k} \in R$, where $k \in \mathbb{N}$.
Hint: Use Theorem 1.46 from Lidl \mathcal{G} Niederreiter and proceed by induction on k.

