INF 240 - Exercise problems - 3

Nikolay Kaleyski

Exercise 1. Write down Cayley tables for the additive and multiplicative operation in $(\mathbb{F}_7, +, \cdot)$. In addition, create tables of additive and multiplicative inverses which lists the inverse of each element of \mathbb{F}_7 .

+	0	1	2	3	4	5	6
0							
1							
2							
3							
4							
5							
6							

Table 1: Addition table for \mathbb{F}_7

•	0	1	2	3	4	5	6
0							
1							
2							
3							
4							
5							
6							

Table 2: Multiplication table for \mathbb{F}_7

x	-x	x^{-1}
0		
1		
2		
3		
4		
5		
6		
7		

Table 3: Inverse table for \mathbb{F}_7

Exercise 2. Consider the ring $\mathbb{F}_{7}[x]$ of polynomials in indeterminate x over the finite field $(\mathbb{F}_{7}, +, \cdot)$.

1. Write down the vectors of coefficients corresponding to

$$p_1(x) = x^5 + 3x^4 + 6x^2 + 2x + 1$$

and

$$p_2(x) = 6x^4 + 3x^3 + x^2 + x + 5;$$

- 2. What are the degrees of $p_1(x)$ and $p_2(x)$?
- 3. Is $p_1(x)$, resp. $p_2(x)$ a monic polynomial?
- 4. Compute $p_1(x) + p_2(x)$, $p_1(x) \cdot p_2(x)$, $-p_1(x)$ and $-p_2(x)$;
- 5. Divide $p_1(x)$ by $p_2(x)$ with remainder, i.e. find q(x) and r(x) satisfying $p_1(x) = q(x)p_2(x) + r(x)$, with $\deg r(x) < \deg p_2(x)$.

Exercise 3. Consider the set of 3×3 matrices over the real numbers. Recall that addition of matrices is performed component-wise, *i.e.*

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \\ a_{31} + b_{31} & a_{32} + b_{32} & a_{33} + b_{33} \end{pmatrix}$$

Matrix multiplication is a bit more involved; we have

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix},$$

where $c_{i,j} = \sum_{k=1}^{3} a_{i,k} b_{k,j}$. For example, $c_{12} = a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32}$. Recall also the zero matrix

$$Z = \left(\begin{array}{rrr} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

and the identity matrix

$$I = \left(\begin{array}{rrrr} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array}\right).$$

 $Consider \ the \ matrices$

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix} B = \begin{pmatrix} 0 & 2 & 2 \\ 1 & 0 & 2 \\ 2 & 1 & 0 \end{pmatrix} C = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 2 & 0 \\ 2 & 1 & 1 \end{pmatrix}.$$

- 1. The zero matrix clearly has the property that Z + M = M + Z for any matrix M. Show that the identity matrix has the same property with respect to matrix multiplication, i.e. IM = MI = M for any matrix M.
- 2. Compute the sums A + B, A + C, B + C.

- 3. Compute the products AB, BA, AC, CA, BC, CB.
- 4. What are the additive inverses of A, B and C?

Exercise 4. Consider the matrices A, B, and C defined in the previous exercise but over \mathbb{F}_5 instead of the real numbers. Repeat the same operations as in the previous exercise:

Compute the sums A + B, A + C, B + C.

Compute the products AB, BA, AC, CA, BC, CB.

What are the additive inverses of A, B and C.

Exercise 5. (Lidl & Niederreiter 1.15)

Recall from the lecture that if R is a commutative ring of characteristic p, then for any $a, b \in R$ we have $(a+b)^{p^n} = a^{p^n} + b^{p^n}$. Show that

$$(a_1 + a_2 + a_3 + \dots + a_k)^{p^n} = a_1^{p^n} + a_2^{p^n} + a_3^{p^n} + \dots + a_k^{p^k}$$

for any $a_1, a_2, a_3, \ldots, a_k \in \mathbb{R}$, where $k \in \mathbb{N}$.

Hint: Use Theorem 1.46 from Lidl & Niederreiter and proceed by induction on k.