
INF 240 - Exercise problems - 2

Solutions

Nikolay Kaleyski

Exercise 1. To show that H is a subgroup of G if and only if equation (1)
holds, we have to show two things:

• if H is a subgroup of G, then equation (1) holds;

• if equation (1) holds, then H is a subgroup of G.

We begin with the first implication, so we assume that H is a subgroup of
G. Suppose we are given two elements a, b ∈ H. Since H is a subgroup, b must
have an inverse b−1 in H. But since a, b−1 ∈ H and H (as a subgroup) is closed
under the group operation, we have ab−1 ∈ H. Thus, equation (1) holds.

Now we prove the second point, so we assume that (1) holds and we want to
prove that H is a sub-group. First, we will show that the neutral element e of
the group G belongs to H. Let a ∈ H be some arbitrary element of H. Consider
all powers a1 = a, a2 = a · a, a3 = a · a · a, etc. Since H is a finite, eventually
this sequence will loop, i.e. we will have ak = an for some k < n. We thus have

a · a · a · · · · · a︸ ︷︷ ︸
k times

= a · a · a · · · · · a︸ ︷︷ ︸
n times

.

Since a ∈ G and G is a group, a has an inverse a−1 such that a−1 · a = e.
Multiplying both sides of the above equation by a−1 n times, we obtain

ak−n = e,

i.e. the neutral element e can be expressed as a power of a. But by equation
(1) which we have assumed to be true, for any a, b ∈ H we have ab ∈ H (note
that a and b do not have to be different elements here); we thus have a2 ∈ H
(with a = a, b = a), a3 ∈ H (with a = a2, b = a), etc. Ultimately, ak = e ∈ H,
so H contains the neutral element.

From equation (1), we already know that H is closed with respect to the
group operation. So it only remains to show that for every element a ∈ H, its
inverse a−1 also belongs to H. Just like we did above, for any element a, we
can find some integer k such that ak = e. Then ak−1 is the inverse of a since
a · ak−1 = ak−1 · a = ak = e.

Exercise 2. 1. By definition, ϕ(ps) is the number of integers a in the range
1 ≤ a ≤ ps that are co-prime with ps. Clearly, there are ps integers in this
range; if we determine how many of them are not co-prime with ps, we merely
have to subtract their number from ps in order to arrive at the result.
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Recall that every integer k can be written as a product of powers of primes,
and that this product is unique (up to rearrangement). This is referred to as the
prime factorization of k. For instance, we can write 132 = 22 · 3 · 11.

If a number a is not co-prime with ps, then a and ps must have a common
divisor; in particular, they must both contain the same prime in their prime
factorization. But since ps is a power of a prime, this means that a must
contain p (or some power of p) in its prime factorization. Thus, a must be of
the form a = p · b for some integer b between 1 and ps−1. Since we have ps−1

choices for b, the number of integers a that are not co-prime with ps is exactly
ps−1. Hence

ϕ(ps) = ps − ps−1 = ps
(
1− 1

p

)
.

2. Since m and n are prime, we immediately have ϕ(m) = m − 1 and
ϕ(n) = n − 1. As above, we want to calculate the number of integers a with
1 ≤ a ≤ mn that are not co-prime with mn. An integer a is not co-prime with
mn if it divides m or if it divides n; and since by assumption gcd(m,n) = 1, it
cannot divide both m and n at the same time (unless a = 1).

The integers a that are not co-prime with mn must have the form bm or
cn for somec,m. In the first case, we have m, 2m, 3m, 4m, . . . , nm, and in the
second case we have n, 2n, 3n, 4n, . . . ,mn: thus, we have n integers in the first
case, and m it the second case. We have to subtract 1 to account for double-
counting since mn appears in both lists. Thus, the number of integers a in
1 ≤ a ≤ mn that are not co-prime with mn is (m+ n− 1), and hence

ϕ(mn) = mn− (m+ n− 1) = mn−m− n+ 1.

On the other hand, we have

ϕ(m)ϕ(n) = (m− 1)(n− 1) = mn− n−m+ 1,

so that the two qualities are indeed equal.

Exercise 3. Here we have to be very careful that we interpret the symbols
properly and only use the rules prescribed in the axioms from the definition of a
ring. For instance, one has to remember that there is no subtraction in a ring,
and (−a) denotes the additive inverse of a, i.e. the inverse of a with respect to
the additive operation.

Since a+ (−a) = (−a) + a = b+ (−b) = (−b) + b = 0, we have

(a+ (−a))(−b) = a((−b) + b).

Using the distributive property of the ring, we have

a(−b) + (−a)(−b) = a(−b) + ab.

By adding the additive inverse of a(−b) to both sides of the above equation,
the former cancels out, and we obtain

(−a)(−b) = ab

as desired.
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+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 7 0 1 2 3 4 5 6
2 6 7 0 1 2 3 4 5
3 5 6 7 0 1 2 3 4
4 4 5 6 7 0 1 2 3
5 3 4 5 6 7 0 1 2
6 2 3 4 5 6 7 0 1
7 1 2 3 4 5 6 7 0

Table 1: Cayley table for (Z8,+)

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 9 0 1 2 3 4 5 6 7 8
2 8 9 0 1 2 3 4 5 6 7
3 7 8 9 0 1 2 3 4 5 6
4 6 7 8 9 0 1 2 3 4 5
5 5 6 7 8 9 0 1 3 2 4
6 4 5 6 7 8 9 0 1 2 3
7 3 4 5 6 7 8 9 0 1 2
8 2 3 4 5 6 7 8 9 0 1
9 1 2 3 4 5 6 7 8 9 0

Table 2: Cayley table for (Z10,+)

Exercise 4. 1. The Cayley tables simply express addition modulo 8, resp.
addition modulo 8, and take the form

and
2. Since (Zn,+) is a commutative group for any positive integer n, we can

use the fact that any subgroup of a commutative group is normal, and simply
concentrate on finding a subgroup of Z8, resp. Z10.

We can take H = {0, 2, 4, 6} to be the subgroup of Z8 consisting of even
numbers. By the statement we proved in Exercise 1, it is clear that H is indeed a
subgroup of Z8 since the sum of two even integers is always even, and modulation
by an even integer (in this case, 8) does not change the parity.

For Z10, we could also take N to be the sub-group of even integers, but we
can also take e.g. N = {0, 5}. It is clear that this is a subgroup.

3. The elements of the factor groups are simply the cosets of the normal
subgroup. In the case of Z8/H, the cosets are

[0] = {0, 2, 4, 6}

and
[1] = {1, 3, 5, 7}.

In the case of Z10/N , the cosets are

[0] = {0, 5},
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[1] = {1, 6},

[2] = {2, 7},

[3] = {3, 8},

and
[4] = {4, 9}.

4. Since H has 4 elements, its order is 4, and its index is 8/4 = 2. Since N
has 2 elements, its order is 2 and its index is 10/2 = 5.

5. It is easy to see that e.g. 2 generates H and 5 generates N .
6. Since Zn is commutative for every positive integer n, its center is Zn

itself, and each element of Zn lies in its own conjugacy class consisting only of
itself.
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