INF 240 - Exercise problems - 2 Solutions

Nikolay Kaleyski

Exercise 1. To show that H is a subgroup of G if and only if equation (1) holds, we have to show two things:

- if H is a subgroup of G, then equation (1) holds;
- if equation (1) holds, then H is a subgroup of G.

We begin with the first implication, so we assume that H is a subgroup of G. Suppose we are given two elements $a, b \in H$. Since H is a subgroup, b must have an inverse b^{-1} in H. But since $a, b^{-1} \in H$ and H (as a subgroup) is closed under the group operation, we have $ab^{-1} \in H$. Thus, equation (1) holds.

Now we prove the second point, so we assume that (1) holds and we want to prove that H is a sub-group. First, we will show that the neutral element e of the group G belongs to H. Let $a \in H$ be some arbitrary element of H. Consider all powers $a^1 = a$, $a^2 = a \cdot a$, $a^3 = a \cdot a \cdot a$, etc. Since H is a finite, eventually this sequence will loop, i.e. we will have $a^k = a^n$ for some k < n. We thus have

$$\underbrace{a \cdot a \cdot a \cdots a}_{k \ times} = \underbrace{a \cdot a \cdot a \cdots a}_{n \ times}.$$

Since $a \in G$ and G is a group, a has an inverse a^{-1} such that $a^{-1} \cdot a = e$. Multiplying both sides of the above equation by a^{-1} n times, we obtain

$$a^{k-n} = e,$$

i.e. the neutral element e can be expressed as a power of a. But by equation (1) which we have assumed to be true, for any $a, b \in H$ we have $ab \in H$ (note that a and b do not have to be different elements here); we thus have $a^2 \in H$ (with a = a, b = a), $a^3 \in H$ (with $a = a^2, b = a$), etc. Ultimately, $a^k = e \in H$, so H contains the neutral element.

From equation (1), we already know that H is closed with respect to the group operation. So it only remains to show that for every element $a \in H$, its inverse a^{-1} also belongs to H. Just like we did above, for any element a, we can find some integer k such that $a^k = e$. Then a^{k-1} is the inverse of a since $a \cdot a^{k-1} = a^{k-1} \cdot a = a^k = e$.

Exercise 2. 1. By definition, $\varphi(p^s)$ is the number of integers a in the range $1 \leq a \leq p^s$ that are co-prime with p^s . Clearly, there are p^s integers in this range; if we determine how many of them are not co-prime with p^s , we merely have to subtract their number from p^s in order to arrive at the result.

Recall that every integer k can be written as a product of powers of primes, and that this product is unique (up to rearrangement). This is referred to as the prime factorization of k. For instance, we can write $132 = 2^2 \cdot 3 \cdot 11$.

If a number a is not co-prime with p^s , then a and p^s must have a common divisor; in particular, they must both contain the same prime in their prime factorization. But since p^s is a power of a prime, this means that a must contain p (or some power of p) in its prime factorization. Thus, a must be of the form $a = p \cdot b$ for some integer b between 1 and p^{s-1} . Since we have p^{s-1} choices for b, the number of integers a that are not co-prime with p^s is exactly p^{s-1} . Hence

$$\varphi(p^s) = p^s - p^{s-1} = p^s \left(1 - \frac{1}{p}\right).$$

2. Since m and n are prime, we immediately have $\varphi(m) = m - 1$ and $\varphi(n) = n - 1$. As above, we want to calculate the number of integers a with $1 \leq a \leq mn$ that are not co-prime with mn. An integer a is not co-prime with mn if it divides m or if it divides n; and since by assumption gcd(m, n) = 1, it cannot divide both m and n at the same time (unless a = 1).

The integers a that are not co-prime with mn must have the form bm or cn for somec, m. In the first case, we have $m, 2m, 3m, 4m, \ldots, nm$, and in the second case we have $n, 2n, 3n, 4n, \ldots, mn$: thus, we have n integers in the first case, and m it the second case. We have to subtract 1 to account for doublecounting since mn appears in both lists. Thus, the number of integers a in $1 \le a \le mn$ that are not co-prime with mn is (m + n - 1), and hence

$$\varphi(mn) = mn - (m + n - 1) = mn - m - n + 1.$$

On the other hand, we have

$$\varphi(m)\varphi(n) = (m-1)(n-1) = mn - n - m + 1,$$

so that the two qualities are indeed equal.

Exercise 3. Here we have to be very careful that we interpret the symbols properly and only use the rules prescribed in the axioms from the definition of a ring. For instance, one has to remember that there is no subtraction in a ring, and (-a) denotes the additive inverse of a, i.e. the inverse of a with respect to the additive operation.

Since a + (-a) = (-a) + a = b + (-b) = (-b) + b = 0, we have

$$(a + (-a))(-b) = a((-b) + b).$$

Using the distributive property of the ring, we have

$$a(-b) + (-a)(-b) = a(-b) + ab.$$

By adding the additive inverse of a(-b) to both sides of the above equation, the former cancels out, and we obtain

$$(-a)(-b) = ab$$

as desired.

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	7	0	1	2	3	4	5	6
2	6	7	0	1	2	3	4	5
3	5	6	7	0	1	2	3	4
4	4	5	6	7	0	1	2	3
5	3	4	5	6	7	0	1	2
6	2	3	4	5	6	7	0	1
7	1	2	3	4	5	6	7	0

Table 1: Cayley table for $(\mathbb{Z}_8, +)$

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	9	0	1	2	3	4	5	6	7	8
2	8	9	0	1	2	3	4	5	6	7
3	7	8	9	0	1	2	3	4	5	6
4	6	7	8	9	0	1	2	3	4	5
5	5	6	7	8	9	0	1	3	2	4
6	4	5	6	7	8	9	0	1	2	3
7	3	4	5	6	7	8	9	0	1	2
8	2	3	4	5	6	7	8	9	0	1
9	1	2	3	4	5	6	7	8	9	0

Table 2: Cayley table for $(\mathbb{Z}_{10}, +)$

Exercise 4. 1. The Cayley tables simply express addition modulo 8, resp. addition modulo 8, and take the form

and

2. Since $(\mathbb{Z}_n, +)$ is a commutative group for any positive integer n, we can use the fact that any subgroup of a commutative group is normal, and simply concentrate on finding a subgroup of \mathbb{Z}_8 , resp. \mathbb{Z}_{10} .

We can take $H = \{0, 2, 4, 6\}$ to be the subgroup of \mathbb{Z}_8 consisting of even numbers. By the statement we proved in Exercise 1, it is clear that H is indeed a subgroup of \mathbb{Z}_8 since the sum of two even integers is always even, and modulation by an even integer (in this case, 8) does not change the parity.

For \mathbb{Z}_{10} , we could also take N to be the sub-group of even integers, but we can also take e.g. $N = \{0, 5\}$. It is clear that this is a subgroup.

3. The elements of the factor groups are simply the cosets of the normal subgroup. In the case of \mathbb{Z}_8/H , the cosets are

$$[0] = \{0, 2, 4, 6\}$$

and

$$[1] = \{1, 3, 5, 7\}.$$

In the case of \mathbb{Z}_{10}/N , the cosets are

$$[0] = \{0, 5\},\$$

$$\begin{split} & [1] = \{1,6\}, \\ & [2] = \{2,7\}, \\ & [3] = \{3,8\}, \end{split}$$

and

$$[4] = \{4, 9\}.$$

4. Since H has 4 elements, its order is 4, and its index is 8/4 = 2. Since N has 2 elements, its order is 2 and its index is 10/2 = 5.

5. It is easy to see that e.g. 2 generates H and 5 generates N.

6. Since \mathbb{Z}_n is commutative for every positive integer n, its center is \mathbb{Z}_n itself, and each element of \mathbb{Z}_n lies in its own conjugacy class consisting only of itself.