INF 240 - Exercise problems - 2

Nikolay Kaleyski

Exercise 1. (Lidl & Niederreiter 1.2) Let (G, \cdot) be a multiplicative group, and let $\emptyset \neq H \subseteq G$.

1. Show that H is a subgroup of G if and only if

$$a, b \in H \implies ab^{-1} \in H \tag{1}$$

for all $a, b \in G$.

2. Show that if H is finite, then the condition in (1) can be replaced by

 $a, b \in H \implies ab \in H$

for all $a, b \in G$.

Exercise 2. (Lidl & Niederreiter 1.4)

For a natural number m, Euler's function $\varphi(m)$ is defined to be the number of integers k such that $1 \leq k \leq m$ and gcd(k,m) = 1. Show that for any $m, n, s, p \in \mathbb{N}$ with p prime:

- 1. $\varphi(p^s) = p^s \left(1 \frac{1}{p}\right);$
- 2. if m and n are prime numbers, then gcd(m,n) = 1, then $\varphi(mn) = \varphi(m)\varphi(n)$.

Exercise 3. (Lidl & Niederreiter 1.7) Let $(R, +, \cdot)$ be a ring. Show that

$$(-a)(-b) = ab$$

for all $a, b \in R$.

Exercise 4. Consider the additive groups $(\mathbb{Z}_8, +)$ and $(\mathbb{Z}_{10}, +)$.

- 1. Write out the Cayley tables for $(\mathbb{Z}_8, +)$ and $(\mathbb{Z}_{10}, +)$;
- 2. Find a normal subgroup H of $(\mathbb{Z}_8, +)$ and a normal subgroup N of $(\mathbb{Z}_{10}, +)$;
- 3. Construct the factor groups \mathbb{Z}_8/H and \mathbb{Z}_{10}/N ;
- 4. Find the index and order of H in \mathbb{Z}_8 and of N in \mathbb{Z}_{10} ;
- 5. Find generators of \mathbb{Z}_8 , \mathbb{Z}_{10} , M, and N;
- 6. Find the conjugacy classes and the center of \mathbb{Z}_8 and of \mathbb{Z}_{10} .