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1 Cryptographic security of vectorial Boolean
functions

One of the most important practical applications of (n,m)-functions is in block
ciphers in cryptography, where they are employed in the role of so-called “substi-
tution boxes” or “S-boxes”. In order to make their implementation and analysis
manageable, block ciphers typically incorporate only one non-linear component,
which is represented as an (n,m)-function. The security of the entire cipher
then directly depends on the properties of the chosen function. Using an S-box
with suboptimal cryptographic properties leads to cryptographically weak ci-
phers that can be broken by various kinds of cryptanalytic attacks. Identifying
(n,m)-functions with good cryptographic qualities is thus a crucial part of the
design and analysis of block ciphers, and in this assignment we will take a look
at how the cryptographic strength of (n,m)-functions can be measured.

In general, cryptanalytic attacks exploit predictable patterns and regularities
in the behaviour of functions. Different attacks exploit different weaknesses, and
consequently cryptographers have identified different properties and statistics
that quantify the resistance of functions to such attacks. We will focus on
two of the most powerful known attacks against block ciphers, viz. differential
cryptanalysis and linear cryptanalysis.

1.1 Differential uniformity

Differential cryptanalysis exploits dependencies between the difference in the
inputs and the outputs to a function. In other words, suppose that F (x) is
an (n,m)-function for some n and m. If we have two inputs, x1 and x2, let us
denote their difference by d = x1−x2. The difference between the outputs would
be e = F (x1) − F (x2). Ideally, if the attacker knows the difference in inputs,
this should not give him any information about the outputs; in particular, he
should be unable to predict the difference of the outputs any better than just
guessing it at random. But if for some input difference d some output difference
e occurs frequently (meaning that for a lot of the inputs (x1, x2), (x3, x4), etc.
with input difference d = x1−x2 = x3−x4, etc. the output difference is e), the
attacker can use this to his advantage.

To express this formally, we define the numbers δF (a, b) which count the
number of pairs with a given input difference that map to a given output dif-
ference for a given (n,m)-function F . Formally, we define this as

δF (a, b) = |{x ∈ F2n : F (a+ x)− F (x) = b}| (1)
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where a ∈ F2n and b ∈ F2m ; equivalently, this is the number of solutions x
to the equation F (a + x) − F (x) = b. Here a is the input difference and b is
the output difference. In order for the function to be secure, there should be
no combination (a, b) of input and output difference for which this number of
solutions is large. So we define the quantity

δF = max
0 6=a∈F2n ,b∈F2m

δF (a, b) (2)

which we call the differential uniformity of F . The lower the value of δF , the
more resistant F is to differential cryptanalysis.

Before continuing, we note a few conventions. First, we are in a field of
characteristic two, so addition and subtraction are the same; thus, in equation
(1), we can replace the minus signs with plus signs. Second, the functions of the
form DaF (x) = F (a + x) − F (x) = F (a + x) + F (x) are used very frequently
in the cryptographic analysis of (n,m)-functions, and are called the derivatives
of F . If F is an (n,m)-function, then so are its derivatives; hence, they can be
expressed as truth tables, univariate polynomials, in ANF, etc.

For example, if F (x) = x10 is the univariate form of an (n,m)-function, then
DaF (x) = (x+ a)10 +x10 for any a ∈ F2n . Using the “freshman’s theorem”, we
can simplify this as

(x+ a)8(x+ a)2 + x10 = (x8 + a8)(x2 + a2) + x10 =

x10 + x8a2 + x2a8 + a10 + x10 = x8a2 + x2a8 + a10.

Exercise 1. Let α be a primitive element of F24 and consider the (4, 4)-function

F (x) = x9 + αx.

1. Find the univariate form of the derivative DaF (x), where a is some ele-
ment F24 .

2. Find the univariate form of the derivative of DaF (x) in direction b, i.e.
the so-called second derivative DbDaF (x), for some element b ∈ F24 .

3. Find and compare the algebraic degrees of F , DaF and DbDaF .

In general, the only way to compute δF for some given (n,m)-function F is to
go through all possible values of a 6= 0 and b and find the number of solutions to
F (x+a)+F (x) = b. For small values of n and m, this can be done fairly quickly
on a computer. Nonetheless, computing the differential uniformity is easier for
power functions, i.e. for functions of the form xd, and for quadratic functions,
i.e. for functions of algebraic degree 2. In the case of a power function F , the
derivatives DaF “behave” the same with respect to the number of solutions for
all non-zero values of a, so it is enough to take any fixed value of a, say a = 1,
and go through all b. In the case of quadratic functions, it suffices to find the
number of solutions x to DaF (x) = F (a) for all values of a.

Exercise 2. The following truth table corresponds to a (3, 3)-power function.
For each three-dimensional binary vector b ∈ F23 , find the number of solutions
to F (a + x) + F (x) = b for a = (0, 0, 1). What is the differential uniformity of
this function?
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x F (x)
000 000
001 101
010 110
011 111
100 100
101 011
110 001
111 010

Table 1: Truth table for a (3, 3)-power function

It is not difficult to see that the differential uniformity of an (n,m)-function
is always even since if x is a solution to DaF (x) = F (x+a)+F (x) = b for some
a and b, then so is x+ a, since we have

DaF (a+ x) = F (a+ x+ a) + F (a+ x) = F (x) + F (a+ x) = b.

Thus, the lowest possible value of δF is 2. The functions which possess this opti-
mal value of δF are called almost perfect nonlinear (APN), and as a consequence
provide the best possible resistance to differential cryptanalysis.

Exercise 3. It is known that the so-called Gold functions G(x) = x2
i+1 are

APN (n, n)-functions for any n with gcd(i, n) = 1. Show that the Gold function
for i = 1, i.e. G(x) = x3, is APN for any n by the following steps:

1. Find the univariate representation of the derivative DaF (x), where a 6= 0.

2. Show that DaF (x) = b cannot have more than 2 solutions for any b ∈ F2n .

1.2 Nonlinearity

Another powerful attack is linear cryptanalysis, which attempts to approximate
an (n,m)-function F by an affine (possibly linear) (n,m)-function L. The ra-
tionale behind this is that affine (and hence also linear) functions behave in a
predictable way and are easy to analyze (in fact, affine functions are by far the
worst choice for a cryptographic S-box). Although the function used in a block
cipher may not be affine itself, it may be “close” to an affine function (in terms
of Hamming distance). The closer F is to an affine function, the more efficient
the approximation, and hence the more powerful the attack.

In fact, not only must F itself be far away from all (n,m)-affine functions,
but all of its component functions (which are Boolean, i.e. (n, 1)-functions) must
be far away from all (n, 1)-affine functions. The minimum distance between a
Boolean function and all affine functions of the same dimension is called its
nonlinearity. Similarly, the minimum nonlinearity of any of the component
functions of an (n,m)-function F is the nonlinearity of F .

A natural question is, how do we find the set of all affine Boolean functions
of a given dimension. Fortunately, this is easy to do. We know that an affine
function is either a linear function, or a linear function plus a constant. Thus,
the problem of finding all affine function is reduced to that of finding all linear
functions. Computing the set of all linear functions can be approached in two
ways:
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• recall that all linear (n, 1)-functions can be expressed using the trace func-
tion as Trn(ax) for a ∈ F2n . Thus, all affine functions are of the form
Trn(ax) + b for any combination of a ∈ F2n and b ∈ F2.

• Recall that by definition a linear function l must satisfy l(x) + l(y) =
l(x + y) for any x, y ∈ Fn

2 . Thus, if B = {b1, b2, . . . , bn} is a basis of
the vector space Fn

2 and we know the values of l at b1, b2, . . . , bn, we can
uniquely reconstruct the truth table of l. For example, if n = 3 and we
know the values l(0, 0, 1), l(0, 1, 0), and l(1, 0, 0), we can find all remaining
values of l.

Exercise 4. Consider the (2, 1)-function f given by the truth table

x f(x)
00 1
01 0
10 1
11 1

Table 2: Truth table of a (2, 1)-function

Compute its nonlinearity by the following steps:

1. Find the truth tables of the four linear (2, 1)-functions by filling in the
blanks in Table 3 below. To do this, for example, write all possible com-
binations of 0’s and 1’s for the values of the basis (0, 1), (1, 0), and use
them to compute the remaining values of the functions.

2. Add the constant 1 to each output value of each linear function to obtain
the remaining four affine functions.

3. Compute the Hamming distance between each of the eight affine functions
and the function f(x) given in Table 2.

x l1(x) l2(x) l3(x) l4(x) a1(x) a2(x) a3(x) a4(x)
00 - - - - - - - -
01 - - - - - - - -
10 - - - - - - - -
11 - - - - - - - -

Table 3: Affine (2, 1)-functions

Clearly, the higher the non-linearity, the better the resistance against linear
cryptanalysis. However, the question off the optimal value of the non-linearity
is a bit more difficult than in the case of differential uniformity. We have the
so-called covering radius bound, which states that the non-linearity NF of an
(n,m)-function satisfies

NF ≤ 2n−1 − 2n/2−1,

and the Sidelnikov-Chabaud-Vaudeney (SCV) bound, which bounds the nonlin-
earity of any (n,m)-function with m ≥ n− 1 by
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NF ≤ 2n−1 − 1

2

√
3 · 2n − 2− 2

(2n − 1)(2n−1 − 1)

2m − 1
.

Functions attaining the covering radius bound with equality are called bent,
but exist only when m ≤ n/2. Functioning meeting the SCV bound with
equality are called almost bent (AB) and exist only for m = n with n odd. Note
that despite the name, almost bent functions are not inferior to bent functions;
the two classes of functions exist under different conditions.

Furthermore, there is a bound on the algebraic degree of AB Functions in
terms of the dimension of the finite field, viz. deg(F ) ≤ (n+1)/2 if F is AB. This
is rather unfortunate because the algebraic degree is another useful indicator of
cryptographic strength; more precisely, a high algebraic degree indicates a good
resistance to higher order differential cryptanalysis.

Exercise 5. Consider all (7, 7)-functions.

1. Compute the value of the covering radius bound for this case.

2. Compute the value of the SCV bound for this case.

3. Deduce the nonlinearity of a (7, 7)-AB function.

4. What is the highest algebraic degree of a (7, 7)-AB function?

2 Equivalence relations

Since the number of (n,m)-functions grows exponentially with the values of n
and m, various notions of equivalence are introduced in order to make their
classification manageable. More precisely, equivalence relations between (n,m)-
functions are defined, and functions are only classified up to equivalence. Of
course, this only makes sense if the equivalence relations in question preserve
the cryptographic properties of the functions. All of affine equivalence, ex-
tended affine equivalence, EAI-equivalence, cyclotomic equivalence, and CCZ-
equivalence preserve both differential uniformity and non-linearity. Other prop-
erties of functions may or may not remain invariant under these equivalence
relations: for instance, EA-equivalence preserves algebraic degree, whereas CCZ-
equivalence does not.

This has a few practical implications for working with functions. First,
equivalence relations can be used to derive new functions from known ones.
For example, since CCZ-equivalence preserves differential uniformity but not
algebraic degree, searching through the equivalence class of an APN function
of low algebraic degree is a good way of finding another APN function of high
algebraic degree (which, as we mentioned previously, provides good resistance
to higher order differential attacks). On the other hand, if a new APN function
is discovered, it must be compared for equivalence against all previously known
functions.

The most general known equivalence relation which preserves differential
uniformity is CCZ-equivalence. We say that two (n,m)-functions F and G
are CCZ-equivalent if there is an affine permutation which maps the graph
{(x, F (x)) : x ∈ F2n} of F to the graph of G.
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In general, checking whether two given functions are equivalent is quite dif-
ficult to do. It is much easier to do for cyclotomic equivalent than, for instance,
for CCZ-equivalence. Fortunately, in some particular cases, these two notions of
equivalence coincide. This is the case for power functions: two power functions
are CCZ-equivalent if and only if they are cyclotomic equivalent.

Recall that two (n, n)-power functions xd and xe are cyclotomic equivalent
if d = 2ie mod (2n − 1) or if gcd(e, 2n − 1) = 1 and d = 2i/e mod (2n − 1).

Exercise 6. Consider the following five (7, 7)-functions:

f1(x) = x10 f2(x) = x23 f3(x) = x25 f4(x) = x40 f5(x) = x101

Partition them into CCZ-equivalence classes, i.e. find all pairs among the
given functions that are CCZ-equivalent.
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