
INF 240 - Exercise problems - 11

Nikolay Kaleyski

1 Boolean functions

A Boolean function on n variables is a function which maps a vector of n binary
values (zeros and ones) to a single binary value. Formally, this is a mapping f
from the n-dimension vector space Fn

2 over the finite field F2 = {0, 1} to F2.

Example 1. Consider the parity function p3 : F3
2 → F2 on 3 variables, which

outputs 0 if the number of ones that it receives as input is even, and outputs
1 if the number of ones in the input is odd. We then have p3(0, 0, 0) = 0,
p3(0, 0, 1) = 1, p3(0, 1, 0) = 1, p3(0, 1, 1) = 0, p3(1, 0, 0) = 1, p3(1, 0, 1) = 0,
p3(1, 1, 0) = 0, and p3(1, 1, 1) = 1.

The simplest way to specify a Boolean function is by listing its output value
for every possible input (which is what we have done in Example 1). When
taking this approach, it is usually more systematic to list the values in a lookup
table (such as the one in Table 1 below). This is called the truth table (TT)
representation of f , and constitutes one of the fundamental methods of repre-
senting a Boolean function.

x1 x2 x3 p3(x1, x2, x3)

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Table 1: Truth table of the parity function on 3 variables

When the number of variables n becomes large, however, the size of the
truth table representation becomes restrictive. For instance, assuming that the
truth table is represented optimally and requires a single bit per row, a Boolean
function on n = 40 variables would require 240 bits, which is precisely 128
gigabytes. For this reason, other representations of Boolean functions that may
be more compact are considered.

One such representation is the algebraic normal form (ANF) of f : Fn
2 → F2,

which is nothing more than a polynomial over F2 in n indeterminates:

f(x1, x2, . . . , xn) = a0 + a1x1 + a2x2 + a3x1x2 + · · ·+ a2n−1x1x2 . . . xn,

1

with the coefficients ai being elements of F2 (hence either 0 or 1). The ANF
may potentially contain all terms involving the n indeterminates x1, x2, . . . xn,
e.g. x1x3x7, or x2x5, including the constant term 1 and the term x1x2 . . . xn
containing all possible input variables. Thus, the ANF can have up to 2n terms
with non-zero coefficients; usually, the majority of the terms have zero coeffi-
cients, which leads to a more compact representation than the truth table.

In order to find the value of a function f(x1, x2, . . . xn) represented by its
ANF, one simply substitutes concrete values for the indeterminates x1, x2, . . . , xn
in the polynomial and simplifies the resulting expression over F2. For example,
the ANF of the parity function p3 on three variables is

p3(x1, x2, x3) = x1 + x2 + x3.

Now, in order to find the value of p3 at (x1, x2, x3) = (0, 1, 1), we simply sub-
stitute 0 for x1 and 1 for x2 and x3 to get

p3(0, 1, 1) = 0 + 1 + 1 = 0;

this is, of course, the same value as the one in Table 1.
Converting an ANF to a TT representation is as simple as evaluating the

polynomial representing the function at every possible input and recording the
values in a table.

Exercise 1. Consider the Boolean function f on 4 variables given by the ANF

f(x1, x2, x3, x4) = 1 + x2 + x1x3 + x1x2x4.

Find the truth table of f by filling in the blanks in Table 2.

x1 x2 x3 x4 f(x1, x2, x3, x4)

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Table 2: Truth table for f(x1, x2, x3, x4) = 1 + x2 + x1x3 + x1x2x4

An important statistic of the Boolean function that can be immediately
extracted from ANF is its so-called algebraic degree. From the point of view of

2

cryptographic applications, a high algebraic degree indicates a good resistance
to higher order differential attacks. The algebraic degree of a Boolean function
is the degree of its ANF, i.e. the number of indeterminates in the largest term
with a non-zero coefficient. For example, in the function f(x1, x2, x3, x4) =
1 + x2 + x1x3 + x1x2x4 from Exercise 1, we have four terms with non-zero
coefficients: 1 does not involve any indeterminates, x2 has one indeterminate,
x1x3 has two, and x1x2x4 has three indeterminates. Thus, the algebraic degree
of f is 3.

Functions of algebraic degree 1, resp. 2, resp. 3 are referred to as affine,
resp. quadratic, resp. cubic. An affine function with no constant term is called
linear.

We now look at how to convert a function from TT to ANF representation.
One way of doing this is by means of so-called atomic functions. An atomic
function is a Boolean function that evaluates to 1 for precisely one input (and
hence evaluates to 0 for the remaining 2n−1 inputs). If we are given a TT with,
say, 5 zeros and 3 ones in the output column, and if we are able to construct the
ANF’s of the atomic functions corresponding to the three non-zero outputs, we
can obtain the ANF corresponding to the TT by summing the ANF’s for the
atomic functions.

For example, consider the TT in Table 1. We already know that the ANF
of this function is p3(x1, x2, x3) = x1 + x2 + x3, but let us see how it can be
extrapolated from the truth table using atomic functions. Looking at the TT,
we see that p3 evaluates to 1 for precisely four inputs, viz. (0, 0, 1), (0, 1, 0),
(1, 0, 0), and (1, 1, 1). If we denote by f1, f2, f4 and f7 the corresponding
atomic functions (with the index in the subscript being the integer whose binary
expansion is the corresponding input vector), i.e. if

f1(x1, x2, x3) =

{
1 (x1, x2, x3) = (0, 0, 1)

0 otherwise

f2(x1, x2, x3) =

{
1 (x1, x2, x3) = (0, 1, 0)

0 otherwise

f4(x1, x2, x3) =

{
1 (x1, x2, x3) = (1, 0, 0)

0 otherwise

f7(x1, x2, x3) =

{
1 (x1, x2, x3) = (1, 1, 1)

0 otherwise

and if we can find the ANF’s of the above functions, then clearly p3 =
f1 + f2 + f4 + f7, so it is enough to take their sum.

Fortunately, there is a systematic way to construct the ANF of an atomic
function. Consider the polynomial

(x1 + 1)(x2 + 1)x3.

If x1 = 1, then (x1 + 1) = (1 + 1) = 0 and hence the entire polynomial evaluates
to 0. So, in order for this polynomial to evaluate to 1, x1 must necessarily be
equal to 0. Similarly, the term (x2+1) forces x2 to be 0, and term term x3 forces
x3 to be 1. In this way, this polynomial evaluates to 1 for (x1, x2, x3) = (0, 0, 1)

3

and to 0 for all other combinations of inputs. In other words, this is precisely
the ANF of the atomic function f1(x1, x2, x3). Expanding the parentheses, we
have

f1(x1, x2, x3) = x3 + x1x3 + x2x3 + x1x2x3.

Similarly, we can construct the ANF of f2 as

f2(x1, x2, x3) = (x1 + 1)x2(x3 + 1) = x2 + x1x2 + x2x3 + x1x2x3,

of f4 as

f4(x1, x2, x3) = x1(x2 + 1)(x3 + 1) = x1 + x1x2 + x1x3 + x1x2x3,

and of f7 as
f7(x1, x2, x3) = x1x2x3.

The ANF of p3 can then be computed as

p3 = f1 +f2 +f4 +f7 = x3 +x1x3 +x2x3 +x1x2x3 +x2x1x2 +x2x3 +x1x2x3+

x1 + x1x2 + x1x3 + x1x2x3 + x1x2x3 = x1 + x2 + x3.

Recall that addition and subtraction coincide over F2 so that identical terms
cancel out when simplifying the above expression.

Exercise 2. Consider the Boolean function g on 4 variables given by the truth
table

x1 x2 x3 x4 g(x1, x2, x3, x4)

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

Table 3: Truth table for g : F4
2 → F2

Find the ANF’s of the three atomic functions corresponding to the three
non-zero outputs in Table 3, and use them to find the ANF of g. Determine the
algebraic degree of g.

4

2 Vectorial Boolean functions

In general, the condition that the output of a Boolean function is a single bit is
too restrictive for many practical applications. In cryptography, for instance, we
would usually want to replace an input block of n bits with an output block of
the same size – and not just a single bit. A natural way to implement multi-bit
output using Boolean functions is to have several Boolean functions (instead
of just one), with each function computing one individual bit of the output.
For example, we could represent a function which maps 4 bits to 2 bits as a
vector (f1, f2) of two functions, with f1 : F4 → F2 giving the first output bit
and f2 : F4

2 → F2 giving the second output bit. Alternatively, we can consider
a single function F : F4

2 → F2
2. It is for this reason that functions from Fn

2 to
Fm
2 for some positive integers n and m are called vectorial Boolean functions,

or (n,m)-functions. In particular, any Boolean function on n variables can be
seen as an (n, 1)-vectorial Boolean function.

Vectorial Boolean functions can be represented using truth tables and poly-
nomials in algebraic normal form just like Boolean functions, but the definitions
of these two representations have to be slightly extended to accommodate for
multiple output variables. In the case of the truth table, this simply means
that multiple output columns are added. For example, the truth table of a
(3, 2)-function is given below in Table 4.

x1 x2 x3 F (x1, x2, x3)

0 0 0 0 0
0 0 1 0 1
0 1 0 1 1
0 1 1 1 0
1 0 0 1 1
1 0 1 1 0
1 1 0 0 0
1 1 1 0 1

Table 4: Truth table of a (3, 2)-function

If we consider F as a vector F = (f1, f2) of Boolean functions, we say that
f1 and f2 are the coordinate functions of F .

In the case of the algebraic normal form of an (n,m)-functions, the terms
remain the same, but the coefficients are taken from Fm

2 instead of just F2. The
ANF corresponding to the function F given in Table 4 is

F (x1, x2, x3) = (1, 1)x1 + (1, 1)x2 + (0, 1)x3.

The ANF of an (n,m)-function can be obtained i.a. from the ANF’s of
its coordinate functions. Note that the second coordinate function, f2, of F
from Table 4 is precisely the parity function p3 (compare with Table 1), and we
already know that its ANF is f2(x1, x2, x3) = x1 + x2 + x3. Upon inspecting
the first output column of Table 4, we can see that f1 gives the parity of the
first two input columns, x1 and x2; thus, it is easy to see that its ANF is
f1(x1, x2, x3) = x1 + x2. We can thus write

F (x1, x2, x3) = (x1 + x2, x1 + x2 + x3),

5

or, in ANF,
F (x1, x2, x3) = (1, 1)x1 + (1, 1)x2 + (0, 1)x3.

Here, the coefficient in front of x3 is (0, 1) since the term x3 is in the ANF for
f2 but not in the ANF for f1, while the coefficients for the remaining two terms
are (1, 1) since these terms occur in the ANF’s of both f1 and f2.

In this way, one can translate between the ANF and TT representation of
vectorial Boolean functions through their coordinate functions.

Exercise 3. Suppose that H is a (3, 4)-function with coordinate functions

h1(x1, x2, x3) = 1 + x1 + x1x2,

h2(x1, x2, x3) = 1 + x1x2,

h3(x1, x2, x3) = x1x2,

h4(x1, x2, x3) = x1 + x1x2x3.

Find the ANF of H and determine its algebraic degree. Derive the truth
table representation of H by filling in the blanks in table 5.

x1 x2 x3 F (x1, x2, x3)

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Table 5: Truth table for H

An important notion is that of the distance between (vectorial) Boolean
functions: intuitively, distance is a measure of how “different” two given func-
tions are. We typically use the notion of Hamming distance, which is simply
the number of inputs for which two given functions produce a different output.
In other words, given two (n,m)-functions F and G, the Hamming distance
between F and G is defined as

d(F,G) = |{(x1, x2, . . . , xn) ∈ Fn
2 | F (x1, x2, . . . , xn) 6= G(x1, x2, . . . , xn)}|.

Thus, for instance, the Hamming distance between the two coordinate func-
tions of F (x1, x2, x3) given in Table 4 is 4, since the two outputs bits are different
for the inputs (0, 0, 1), (0, 1, 1), (1, 0, 1), and (1, 1, 1), and are equal for the re-
maining four inputs.

Exercise 4. Consider the (3, 2)-functions F = (f1, f2) and G = (g1, g2) given
in Table 6. Find the Hamming distance between:

1. the two coordinate functions of F ;

2. the two coordinate functions of G;

3. F and G.

6

x1 x2 x3 F (x1, x2, x3) G(x1, x2, x3)

0 0 0 0 0 0 1
0 0 1 1 0 1 1
0 1 0 1 1 1 1
0 1 1 1 0 0 0
1 0 0 0 1 0 1
1 0 1 0 0 1 1
1 1 0 1 1 0 1
1 1 1 1 1 1 1

Table 6: Truth table of F = (f1, f2) and G = (g1, g2)

2.1 Univariate polynomial form

Recall that the elements of the finite field F2n can be seen as n-dimensional
vectors of elements from F2; in other words, the finite field F2n and the vector
space Fn

2 can be seen as two representations of the same thing. When m divides
n, this allows us to represent (n,m)-functions as univariate polynomials over
F2n . Since x2

n

= x for any x ∈ F2n , the degree of such polynomials can be
assumed to be at most 2n − 1. The representation of an (n,m)-function F in
the form

F (x) =

2n−1∑
i=0

aix
i

for some coefficients ai ∈ F2n is called the univariate representation of F .
Although translating between the univariate and ANF or TT representation
of a function is a bit more involved, one property of the function that can be
immediately read off its univariate representation is the algebraic degree. The
algebraic degree is equal to the maximum binary weight (number of ones in the
binary representation) of any exponent in the univariate representation with a
non-zero coefficient. For example, if

F (x) = x17 + αx7 + α15x5 + α4

is the univariate form of a (6, 6)-function (where α is a primitive element of
F24), we can see that the exponents with a non-zero coefficient are 17, 7, 5, and
0. Writing them in binary, we have 17 = 10001, 7 = 111, 5 = 101, and 0 = 0.
Out of these, 7 has the largest binary weight (since it has 3 ones in its binary
representation), so the algebraic degree of F is 3.

The degree of the polynomial representing the function in univariate form is
called the univariate degree. In this case, the univariate degree is 17.

Exercise 5. For the following (10, 10)-functions given in univariate form, com-
pute their algebraic degree and their univariate degree. Are any of the functions
linear, affine, quadratic, or cubic?

1. F (x) = x22 + x17 + αx6 + x4 + 1;

2. G(x) = αx15 + x11 + x3;

3. H(x) = x256 + α17x64 + x8 + x4 + α2x2 + 1.

7

