
INF 240 - Exercise problems - 1

Nikolay Kaleyski

1 Groups

Recall that a set S together with a binary operation ∗ : S × S → S is called a
group if the operation ∗ satisfies the following properties:

1. Associativity : the order in which we apply the operation to elements does
not matter, i.e. for any s1, s2, s3 ∈ S, we have

(s1 ∗ s2) ∗ s3 = s1 ∗ (s2 ∗ s3);

2. Identity element : there is a so-called identity element e ∈ S which does
not affect the other elements when applied to them with the operation,
i.e. for any s1 ∈ S, we have

s1 ∗ e = e ∗ s1 = s1.

3. Inverse element : every element s1 ∈ S has a so-called inverse element
s−1
1 ∈ S, so that applying the group operation to any element and its

inverse gives the identity element e, i.e. s1 ∗ s−1
1 = s−1

1 ∗ s1 = e.

Note that the definition only specifies that (at least one) identity element
and, for any element s ∈ S, (at least one) inverse element to s exists, but it
does not claim that e.g. there is only one identity element. In fact, both the
identity element and the inverse corresponding to a given element s are uniquely
determined, which can be proved easily from the axioms of the group.

Exercise 1. Show that a group has precisely one identity element.

Exercise 2. Show that for any element s in a group, there is precisely one
inverse to s.

1.1 Modular arithmetic

The set Gn represents all possible remainders of division by n, for some positive
integer n. For example, G4 = {0, 1, 2, 3}, since when dividing a number by
4, there are four possible remainder, viz. 0, 1, 2, and 3. To denote that the
remainder of dividing a by b is m, we write a mod b = m; thus, for example,
7 mod 5 = 2. The ordinary addition and multiplication operations can be
extended to Gn: for instance, to multiply two numbers in G4, we first multiply
them as ordinary integers, and then compute the remainder of dividing the
result by 4. So, 2 · 3 = 2 since 2 · 3 = 6 in Z, and 6 mod 4 = 2.

More formally, we define a mod b = n if there exists an integer q and a non-
negative integer 0 ≤ r < b such that a = bq + r. In the above example, we had
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6 = 1 ·4 + 2, so that in this case we have b = 1 and r = 2. This definition makes
it easier to see how modular arithmetic can be applied to negative numbers
(note that integers a and q do not have to be non-negative!) For example, −6
mod 4 = 2 since we can write −6 = −2 · 4 + 2; here q = −2 and r = 2.

Exercise 3. Create addition and multiplication tables modulo 4 by filling in
Tables 1 and 2 below.

+ 0 1 2 3

0
1
2
3

Table 1: Addition table for G4

· 0 1 2 3

0
1
2
3

Table 2: Multiplication table for G4

Exercise 4. Show that G4 with addition modulo 4, which we can denote by
(G4,+), is a group by verifying each of the three axioms from the definition,
i.e. show that every triple s1, s2, s3 ∈ G4 satisfies associativity, find an identity
element e and verify that for every element s ∈ G4 (including e itself) it holds
that e + z = z + e = z, and, for every s ∈ G4, find its inverse.

Exercise 5. Decide whether G4 with multiplication modulo 4, i.e. the structure
(G4, ·) is a group.

Exercise 6. Although, say, (G5, ·) is not be a group due to 0 not having an in-
verse, it may still be a group if we consider only its non-zero elements. Consider
G5 \ {0} = {1, 2, 3, 4} and show that it is a group.

Exercise 7. Similarly, decide whether (G6, ·) is a group.

In Exercise 3, we computed Table 1, which is essentially a look-up table
for the group operation of (G4,+). Consider, again, the set G4 = {0, 1, 2, 3}.
Instead of specifying the group operation in some “systematic” manner (such as
by taking ordinary addition and reducing the result modulo 4), we can specify
the operation by directly providing a look-up table. This allows us to define
a lot more operations that may not have an “elegant” representation and, as
long as one of these operations satisfies the three axioms from the definition,
the resulting structure will be a group.

Exercise 8. Consider the operation ◦ defined on {0, 1, 2, 3} by Table 3. Check
whether it satisfies each of the three axioms from the definition of a group, and
decide whether it is a group.
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◦ 0 1 2 3

0 0 1 2 3
1 1 2 0 3
2 2 0 3 3
3 3 2 2 0

Table 3: Look-up table for an operation over G4

1.2 Cyclic groups

A group is called cyclic if all of its elements can be generated by repeatedly
applying the group operation to one of its elements. For example, consider the
group (G5 \ {0}, ·). We can compute

2 = 2

2 · 2 = 4

2 · 2 · 2 = 3

2 · 2 · 2 · 2 = 1

and it is evident that all elements of G5 \ {0} = {1, 2, 3, 4} can be expressed
as powers of 2. If this is the case, we say that 2 is a generator of (G5 \ {0}, ·),
or that it generates it. It is also clear that even if a group is cyclic, not all of
its elements can be generators, since e.g. any power of 1 is equal to 1, and we
cannot generate any other element by taking powers of 1.

In general, this means if g is a generator of a group (S, ∗), then all elements
of S can be expressed as the set < g >= {e = g0, g = g1, g2, g3, . . . , } for all
possible powers of g. However, g can be raised to the power of any natural
number, which means we would have to consider an infinite number of powers.
However, if the group S is of size n, it is enough to consider only the first n
powers of g, i.e. {e = g0, g = g1, g2, . . . , gn−1}. To see this, it is enough to
show that these first n powers correspond to different elements of the group.
Suppose that gi = gj for some 0 ≤ i < j < n; then we have gj · g−i = e, i.e.
gj−i = e, and 0 ≤ j − i < n; so the (j − i)-th power of g (which is among the
first n powers) is the identity element, and from then on, the elements will keep
repeating: gj−i+1 = g, gj−1+2 = g2, etc. In this way, it is impossible for g to
generate all n elements of S, which contradicts the fact that g generates S.

This explains how we can handle powers of g higher than n − 1: if i ≥ n,
then i can be written as i = nq + r for r < n. Then gi = gnq+r = gnq · gr =
(gn)q ·gr = eq ·gr = gr. For example, if g generates a group of size n = 15, then
g25 = g25−15 = g10.

In the same way, we can handle negative powers of g: since e.g. −40 =
−3 · 15 + 5, then g−40 = (g15)−3 · g5 = g5.

Exercise 9. Check whether the remaining elements of G5 \ {0}, viz. 3 and 4,
are also generators of (G5 \ {0}, ·).

The principle of cyclicity is the same in the case of additive groups, e.g.
(G4,+), except that the “powers” of an element are actually multiples. More
precisely, in the multiplicative case, applying the group operation, say, five times
to an element a gives

a · a · a · a· = a5,

3



whereas in the additive case we get

a + a + a + a + a = 5a.

NB: Note that the notations a5 and 5a are simply shorthand for multiple
application of the group operation. There is only one operation in a group, viz.
the group operation.

Exercise 10. Consider the group (G11,+). Find the smallest number g which
generates it. Compute:

• 5g + 3g;

• g + 8g;

• 12g;

• −3g;

• −5g + 8g.

Exercise 11. Similarly, consider the group (G11 \ {0}, ·). Find the smallest
number g which generates it. Compute:

• g5 · g3;

• g · g8;

• g12;

• g−3;

• g−5 · g8.

2 Introduction to Magma

Magma is a computer algebra systems which can, among other things, be used
to with groups, finite fields, Boolean functions, and other mathematical objects
studied in the course of INF240. More information can be found at http:

//magma.maths.usyd.edu.au. Although Magma is proprietary software, a free
online calculator is available on their website at http://magma.maths.usyd.

edu.au/calc which can be used to run simple programs.
In this section, we will briefly look at how to perform modular arithmetic

arithmetic with Magma.
Computing the remainder of dividing a by b, i.e. a mod b, is done simply

by typing e.g.
11 mod 5;

which will output 1 since 11 = 2 · 5 + 1. Thus, addition and multiplication
over Gn can be implemented by simply writing e.g.

(a + b) mod n;

or
(a * b) mod n;

for some a, b, and n.
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Suppose we want to compute the inverse of 15 in G101 \ {0}, i.e. we want
to find an element i between 0 and 100 such that (15 · i) mod 101 = 1. One
possibility is to use a for loop and check all possibilities:

f o r i in [ 1 . . 1 0 0 ] do
i f ( i ∗15) mod 101 eq 1 then

pr in t ( i ) ;
end i f ;

end f o r ;

The above code will print all integers i between 1 and 100 satisfying i · 15
mod 101 = 1. There is a more compact way to do this in Magma, which imitates
mathematical set notation:

{ i : i in [ 1 . . 1 0 0 ] | (15∗ i ) mod 101 eq 1 } ;

This will compute the set of all integers between 1 and 100 such that i · 15
mod 101 = 1.

Nonetheless, this is still unnecessarily long, since Magma already has a built
in command for computing the multiplicative inverse of an integer:

Modinv ( 1 5 , 1 0 1 ) ;

If it happens that no inverse exists, Magma will show an error.

Exercise 12. We know that all elements of G101 \ {0} are invertible. Use
Magma to construct a look-up table of inverses, so that every row of the table
contains an integer between 1 and 100 along with its inverse modulo 101.
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